메뉴 건너뛰기




Volumn 11, Issue 3, 1997, Pages 267-278

Comparison of traditional and neural network approaches to stochastic nonlinear system identification

Author keywords

Autoregressive exogeneous input model; Neural networks; Nonlinear autoregressive exogeneous input model; System identification

Indexed keywords


EID: 0000647182     PISSN: 12264865     EISSN: None     Source Type: Journal    
DOI: 10.1007/BF02946319     Document Type: Article
Times cited : (3)

References (4)
  • 1
    • 0024685547 scopus 로고
    • Identification of MIMO nonlinear systems using a forward-regression orthogonal estimator
    • Billings, S. S., Chen, S. and Korenberg, 1989, "Identification of MIMO Nonlinear Systems Using a Forward-regression Orthogonal Estimator," Int. J. Control, Vol. 49, pp. 2157-2189.
    • (1989) Int. J. Control , vol.49 , pp. 2157-2189
    • Billings, S.S.1    Chen, S.2    Korenberg3
  • 2
    • 0024771664 scopus 로고
    • Orthogonal least square methods and their application to nonlinear system identification
    • Chen, S. and Billings, S. S., 1989, "Orthogonal Least Square Methods and their Application to Nonlinear System Identification," Int. J. Control, Vol. 50, No. 5, pp. 1873-1896.
    • (1989) Int. J. Control , vol.50 , Issue.5 , pp. 1873-1896
    • Chen, S.1    Billings, S.S.2
  • 3
    • 0024885063 scopus 로고
    • Modeling and analysis of nonlinear time series
    • Chen, S. and Billings, S. S., 1989, "Modeling and Analysis of Nonlinear Time Series," Int. J. Control, Vol. 50, No. 6, pp. 2151-2171.
    • (1989) Int. J. Control , vol.50 , Issue.6 , pp. 2151-2171
    • Chen, S.1    Billings, S.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.