-
3
-
-
0001750214
-
-
M. Chatelet, A. D. Martino, J. Pettersson, F. Pradere, and H. Vach, Chem. Phys. Lett. 196, 563 (1992).
-
(1992)
Chem. Phys. Lett.
, vol.196
, pp. 563
-
-
Chatelet, M.1
Martino, A.D.2
Pettersson, J.3
Pradere, F.4
Vach, H.5
-
5
-
-
14344267178
-
-
F. A. Gianturco, E. Buonomo, G. Delgado-Barrio, S. Miret-Artes, and P. Villarreal, Z. Phys. D 35, 115 (1995).
-
(1995)
Z. Phys. D
, vol.35
, pp. 115
-
-
Gianturco, F.A.1
Buonomo, E.2
Delgado-Barrio, G.3
Miret-Artes, S.4
Villarreal, P.5
-
11
-
-
36449006394
-
-
T. Raz, I. Schek, M. Ben-Nun, U. Even, J. Jortner, and R. D. Levine, J. Chem. Phys. 101, 8606 (1994).
-
(1994)
J. Chem. Phys.
, vol.101
, pp. 8606
-
-
Raz, T.1
Schek, I.2
Ben-Nun, M.3
Even, U.4
Jortner, J.5
Levine, R.D.6
-
14
-
-
36449000325
-
-
I. Schek, T. Raz, R. D. Levine, and J. Jortner, J. Chem. Phys. 101, 8596 (1994).
-
(1994)
J. Chem. Phys.
, vol.101
, pp. 8596
-
-
Schek, I.1
Raz, T.2
Levine, R.D.3
Jortner, J.4
-
17
-
-
36449002051
-
-
H. Vach, A. D. Martino, M. Benslimane, M. Chatelet, and F. Pradere, J. Chem. Phys. 100, 8526 (1994).
-
(1994)
J. Chem. Phys.
, vol.100
, pp. 8526
-
-
Vach, H.1
Martino, A.D.2
Benslimane, M.3
Chatelet, M.4
Pradere, F.5
-
18
-
-
0000127320
-
-
G.-Q. Xu, R. J. Holland, S. L. Bernasek, and J. C. Tully, J. Chem. Phys. 90, 3831 (1989).
-
(1989)
J. Chem. Phys.
, vol.90
, pp. 3831
-
-
Xu, G.-Q.1
Holland, R.J.2
Bernasek, S.L.3
Tully, J.C.4
-
20
-
-
4243429913
-
-
U. Even, P. J. d. Lange, H. T. Jonkman, and J. Kommandeur, Phys. Rev. Lett. 56, 965 (1986).
-
(1986)
Phys. Rev. Lett.
, vol.56
, pp. 965
-
-
Even, U.1
Lange, P.J.D.2
Jonkman, H.T.3
Kommandeur, J.4
-
22
-
-
0001370030
-
-
E. Hendell, U. Even, T. Raz, and R. D. Levine, Phys. Rev. Lett. 75, 2670 (1995).
-
(1995)
Phys. Rev. Lett.
, vol.75
, pp. 2670
-
-
Hendell, E.1
Even, U.2
Raz, T.3
Levine, R.D.4
-
32
-
-
7244259897
-
-
and Ref. 11
-
For a cold surface,the dissipation to the surface is such that the rebound velocity of an atom is proportional to the incident velocity, see E. K. Grimmelmann, J. C. Tully, and M. J. Cardillo, J. Chem. Phys. 72, 1039 (1980) and Ref. 11.
-
(1980)
J. Chem. Phys.
, vol.72
, pp. 1039
-
-
Grimmelmann, E.K.1
Tully, J.C.2
Cardillo, M.J.3
-
35
-
-
85033035135
-
-
note
-
One can bypass the need for an explicit counting by writing the results in terms of partition functions and obtaining these from thermodynamic considerations. We have done so, computing directly the excess chemical potential of a monomer in the cluster (regarded as a Lennard-Jones fluid) with respect to an ideal gas at the same temperature and pressure. For this purpose we used the equation of state of a Lennard-Jones fluid as determined by a molecular dynamics simulation supplemented at higher temperatures by the Weeks-Chandler-Andersen perturbative expansion, Ref. 30.
-
-
-
-
36
-
-
0001425721
-
-
J. Kostrowicki, L. Piela, B. J. Cherayil, and H. A. Scheraga, J. Phys. Chem. 95, 4113 (1991).
-
(1991)
J. Phys. Chem.
, vol.95
, pp. 4113
-
-
Kostrowicki, J.1
Piela, L.2
Cherayil, B.J.3
Scheraga, H.A.4
-
42
-
-
85033070694
-
-
The estimate that 90% of the initial impact energy is lost to the surface is based on the temperature of the emitted electrons as measured in Ref. 19 supplemented by an information theoretic analysis
-
The estimate that 90% of the initial impact energy is lost to the surface is based on the temperature of the emitted electrons as measured in Ref. 19 supplemented by an information theoretic analysis.
-
-
-
-
45
-
-
85033065581
-
-
Where by fast we mean that not only the rate of acquisition but also that the rate of thermalization is fast compared to the rate of expansion of the cluster, cf. Fig. 1
-
Where by fast we mean that not only the rate of acquisition but also that the rate of thermalization is fast compared to the rate of expansion of the cluster, cf. Fig. 1.
-
-
-
|