-
4
-
-
33845184910
-
-
b) R. van Eldik, T. Asano, and W. J. le Noble, Chem. Rev., 89, 549 (1989).
-
(1989)
Chem. Rev.
, vol.89
, pp. 549
-
-
Van Eldik, R.1
Asano, T.2
Le Noble, W.J.3
-
5
-
-
0001195894
-
-
a) R. Åkesson, L. G. M. Pettersson, M. Sandström, P. E. M Siegbahn, and U. Wahlgren, J. Phys. Chem., 97, 3765 (1993);
-
(1993)
J. Phys. Chem.
, vol.97
, pp. 3765
-
-
Åkesson, R.1
Pettersson, L.G.M.2
Sandström, M.3
Siegbahn, P.E.M.4
Wahlgren, U.5
-
6
-
-
0001183092
-
-
b) R. Åkesson, L. G. M. Pettersson, M. Sandström, and U. Wahlgren, J. Am. Chem. Soc., 116, 8705 (1994);
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 8705
-
-
Åkesson, R.1
Pettersson, L.G.M.2
Sandström, M.3
Wahlgren, U.4
-
7
-
-
0001293428
-
-
c) S.-K. Kang, B. Lam, T. A. Albright, and J. F. O'Brien, New J. Chem., 15, 757 (1991).
-
(1991)
New J. Chem.
, vol.15
, pp. 757
-
-
Kang, S.-K.1
Lam, B.2
Albright, T.A.3
O'Brien, J.F.4
-
8
-
-
0000776702
-
-
a) Y. Tsutsui, H. Wasada, and S. Funahashi, Bull Chem. Soc. Jpn., 70, 1813 (1997);
-
(1997)
Bull Chem. Soc. Jpn.
, vol.70
, pp. 1813
-
-
Tsutsui, Y.1
Wasada, H.2
Funahashi, S.3
-
9
-
-
0001784731
-
-
b) Y. Tsutsui, H. Wasada, and S. Funahashi, Bull. Chem. Soc. Jpn., 71, 73 (1998).
-
(1998)
Bull. Chem. Soc. Jpn.
, vol.71
, pp. 73
-
-
Tsutsui, Y.1
Wasada, H.2
Funahashi, S.3
-
12
-
-
0030982381
-
-
c) M. Hartmann, T. Clark, and R. van Eldik, J. Am. Chem. Soc., 119, 7843 (1997).
-
(1997)
J. Am. Chem. Soc.
, vol.119
, pp. 7843
-
-
Hartmann, M.1
Clark, T.2
Van Eldik, R.3
-
16
-
-
33751392301
-
-
a) R. Åkesson, L. G. M. Pettersson, M. Sandström, and U. Wahlgren, J. Phys. Chem., 96, 10773 (1992);
-
(1992)
J. Phys. Chem.
, vol.96
, pp. 10773
-
-
Åkesson, R.1
Pettersson, L.G.M.2
Sandström, M.3
Wahlgren, U.4
-
17
-
-
0000638649
-
-
b) R. Åkesson, L. G. M. Pettersson, M. Sandström, and U. Wahlgren, J. Am. Chem. Soc., 116, 8691 (1994).
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 8691
-
-
Åkesson, R.1
Pettersson, L.G.M.2
Sandström, M.3
Wahlgren, U.4
-
19
-
-
84884501597
-
-
Gaussian Inc., Pittsburgh, PA
-
a) M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart, and J. A. Pople, "Gaussian 92, Revision C," Gaussian Inc., Pittsburgh, PA (1992);
-
(1992)
Gaussian 92, Revision C
-
-
Frisch, M.J.1
Trucks, G.W.2
Head-Gordon, M.3
Gill, P.M.W.4
Wong, M.W.5
Foresman, J.B.6
Johnson, B.G.7
Schlegel, H.B.8
Robb, M.A.9
Replogle, E.S.10
Gomperts, R.11
Andres, J.L.12
Raghavachari, K.13
Binkley, J.S.14
Gonzalez, C.15
Martin, R.L.16
Fox, D.J.17
Defrees, D.J.18
Baker, J.19
Stewart, J.J.P.20
Pople, J.A.21
more..
-
20
-
-
0010922186
-
-
Gaussian Inc., Pittsburgh, PA
-
b) M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J, B, Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople, "Gaussian 94, Revision C.3," Gaussian Inc., Pittsburgh, PA (1995).
-
(1995)
Gaussian 94, Revision C.3
-
-
Frisch, M.J.1
Trucks, G.W.2
Schlegel, H.B.3
Gill, P.M.W.4
Johnson, B.G.5
Robb, M.A.6
Cheeseman, J.R.7
Keith, T.8
Petersson, G.A.9
Montgomery, J.A.10
Raghavachari, K.11
Al-Laham, M.A.12
Zakrzewski, V.G.13
Ortiz, J.V.14
Foresman, J.B.15
Cioslowski, J.16
Stefanov, B.B.17
Nanayakkara, A.18
Challacombe, M.19
Peng, C.Y.20
Ayala, P.Y.21
Chen, W.22
Wong, M.W.23
Andres, J.L.24
Replogle, E.S.25
Gomperts, R.26
Martin, R.L.27
Fox, D.J.28
Binkley, J.S.29
Defrees, D.J.30
Baker, J.31
Stewart, J.P.32
Head-Gordon, M.33
Gonzalez, C.34
Pople, J.A.35
more..
-
23
-
-
85034470998
-
-
note
-
a mechanism was experimentally accepted. The intrinsic reaction path leading down from the heptacoordination to the hexacoordination (hexaaqua vanadium(II) ion with a water molecule in the second coordination shell) showed that the heptacoordination is the transition state of the water-exchange reaction on the vanadium(II) ion; Furthermore, we evaluated the relation between the low imaginary frequency for the heptacoordination of cobalt(II) and the reaction path of the water-exchange reaction. The geometry optimization was performed with computing second derivatives of the potential surface. The atomic coordinates at the starting point were those of the heptacoordination slightly moved along the transition vector in proportion to its amplitude. The distance between the central cobalt atom and the leaving water molecule increased monotonously and the structure changed to the hexacoordination. These findings indicate that the heptacoordination is the transition state of the water-exchange reactions via the associative mechanism.
-
-
-
-
25
-
-
0009643860
-
-
A. E. Reed, R. B. Weinstock, and F. Weinhold, J. Chem. Phys., 83, 1164 (1985).
-
(1985)
J. Chem. Phys.
, vol.83
, pp. 1164
-
-
Reed, A.E.1
Weinstock, R.B.2
Weinhold, F.3
-
26
-
-
84965842279
-
-
John Wiley & Sons, Inc., New York
-
F. Basolo and R. G. Pearson, "Mechanisms of Inorganic Chemistry," 2nd ed, John Wiley & Sons, Inc., New York (1967).
-
(1967)
"Mechanisms of Inorganic Chemistry," 2nd Ed
-
-
Basolo, F.1
Pearson, R.G.2
|