-
2
-
-
0000502001
-
-
Katz, H. E.; Scheller, G.; Putvinski, T. M.; Schilling, M. L.; Wilson, W. L.; Chidsey, C. E. D. Science 1991, 254, 1485. Li, D.; Ratner, M. A.; Marks, T. J.; Zhang, C.; Yang, J.; Wong, G. K. J. Am. Chem. Soc. 1990, 112, 7389.
-
(1991)
Science
, vol.254
, pp. 1485
-
-
Katz, H.E.1
Scheller, G.2
Putvinski, T.M.3
Schilling, M.L.4
Wilson, W.L.5
Chidsey, C.E.D.6
-
3
-
-
84956171828
-
-
Katz, H. E.; Scheller, G.; Putvinski, T. M.; Schilling, M. L.; Wilson, W. L.; Chidsey, C. E. D. Science 1991, 254, 1485. Li, D.; Ratner, M. A.; Marks, T. J.; Zhang, C.; Yang, J.; Wong, G. K. J. Am. Chem. Soc. 1990, 112, 7389.
-
(1990)
J. Am. Chem. Soc.
, vol.112
, pp. 7389
-
-
Li, D.1
Ratner, M.A.2
Marks, T.J.3
Zhang, C.4
Yang, J.5
Wong, G.K.6
-
4
-
-
0003756957
-
-
Sequeira, C. A. C., Hudson, M. J., Eds.; Kluwer: Netherlands
-
Brousseau, L. C.; Aoki, K.; Garcia, M. E.; Cao, G.; Mallouk, T. E. In Multifunctional Mesoporous Inorganic Solids; Sequeira, C. A. C., Hudson, M. J., Eds.; Kluwer: Netherlands, 1993; pp 225-236.
-
(1993)
Multifunctional Mesoporous Inorganic Solids
, pp. 225-236
-
-
Brousseau, L.C.1
Aoki, K.2
Garcia, M.E.3
Cao, G.4
Mallouk, T.E.5
-
5
-
-
0026817694
-
-
Kepley, L. J.; Sackett, D. D.; Bell, C. M.; Mallouk, T. E. Thin Solid Films 1992, 208, 132. Kaneko, F.; Shibata, M.; Inaba, Y.; Kobayashi, S. Thin Solid Films 1989, 179, 121.
-
(1992)
Thin Solid Films
, vol.208
, pp. 132
-
-
Kepley, L.J.1
Sackett, D.D.2
Bell, C.M.3
Mallouk, T.E.4
-
6
-
-
0024769911
-
-
Kepley, L. J.; Sackett, D. D.; Bell, C. M.; Mallouk, T. E. Thin Solid Films 1992, 208, 132. Kaneko, F.; Shibata, M.; Inaba, Y.; Kobayashi, S. Thin Solid Films 1989, 179, 121.
-
(1989)
Thin Solid Films
, vol.179
, pp. 121
-
-
Kaneko, F.1
Shibata, M.2
Inaba, Y.3
Kobayashi, S.4
-
7
-
-
0019895603
-
-
Netzer, L.; Iscovici, R.; Sagiv, J. Thin Solid Films 1983, 99, 235. Tillman, N.; Ulman, A.; Penner, T. L. Langmuir 1989, 5, 101. Sagiv, J. U.S. Patent 4 539 061, 1985.
-
(1983)
Thin Solid Films
, vol.99
, pp. 235
-
-
Netzer, L.1
Iscovici, R.2
Sagiv, J.3
-
8
-
-
0011531341
-
-
Netzer, L.; Iscovici, R.; Sagiv, J. Thin Solid Films 1983, 99, 235. Tillman, N.; Ulman, A.; Penner, T. L. Langmuir 1989, 5, 101. Sagiv, J. U.S. Patent 4 539 061, 1985.
-
(1989)
Langmuir
, vol.5
, pp. 101
-
-
Tillman, N.1
Ulman, A.2
Penner, T.L.3
-
9
-
-
0019895603
-
-
U.S. Patent 4 539 061, 1985
-
Netzer, L.; Iscovici, R.; Sagiv, J. Thin Solid Films 1983, 99, 235. Tillman, N.; Ulman, A.; Penner, T. L. Langmuir 1989, 5, 101. Sagiv, J. U.S. Patent 4 539 061, 1985.
-
-
-
Sagiv, J.1
-
10
-
-
11944272989
-
-
Cao, G.; Hong, H.-G.; Mallouk, T. E. Acc. Chem. Res. 1992, 25, 420.
-
(1992)
Acc. Chem. Res.
, vol.25
, pp. 420
-
-
Cao, G.1
Hong, H.-G.2
Mallouk, T.E.3
-
11
-
-
0004941035
-
-
Evans, S. D.; Ulman, A.; Goppert-Berarducci, K. E.; Gerenser, L. J. J. Am. Chem. Soc. 1991, 113, 5866.
-
(1991)
J. Am. Chem. Soc.
, vol.113
, pp. 5866
-
-
Evans, S.D.1
Ulman, A.2
Goppert-Berarducci, K.E.3
Gerenser, L.J.4
-
12
-
-
0000539071
-
-
Yang, H. C.; Aoki, K.; Hong, H.-G.; Sackett, D. D.; Arendt, M. F.; Yau, S.-L.; Bell, C. M.; Mallouk, T. E. J. Am. Chem. Soc. 1993, 115, 11855.
-
(1993)
J. Am. Chem. Soc.
, vol.115
, pp. 11855
-
-
Yang, H.C.1
Aoki, K.2
Hong, H.-G.3
Sackett, D.D.4
Arendt, M.F.5
Yau, S.-L.6
Bell, C.M.7
Mallouk, T.E.8
-
14
-
-
0028271465
-
-
Byrd, H.; Whipps, S.; Pike, J. K.; Ma, J.; Nagler, S. E.; Talham, D. R. J. Am. Chem. Soc. 1994, 116, 295.
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 295
-
-
Byrd, H.1
Whipps, S.2
Pike, J.K.3
Ma, J.4
Nagler, S.E.5
Talham, D.R.6
-
15
-
-
0027641591
-
-
Schilling, M. L.; Katz, H. E.; Stein, S. M.; Shane, S. F.; Wilson, W. L.; Buratto, S.; Ungashe, S. B.; Taylor, G. N.; Putvinski, T. M.; Chidsey, C. E. D. Langmuir 1993, 9, 2156.
-
(1993)
Langmuir
, vol.9
, pp. 2156
-
-
Schilling, M.L.1
Katz, H.E.2
Stein, S.M.3
Shane, S.F.4
Wilson, W.L.5
Buratto, S.6
Ungashe, S.B.7
Taylor, G.N.8
Putvinski, T.M.9
Chidsey, C.E.D.10
-
16
-
-
0000999018
-
-
Lvov, Y.; Haas, H.; Decher, G.; Möhwald, H.; Kalachev, A. J. Phys. Chem. 1993, 97, 12835.
-
(1993)
J. Phys. Chem.
, vol.97
, pp. 12835
-
-
Lvov, Y.1
Haas, H.2
Decher, G.3
Möhwald, H.4
Kalachev, A.5
-
17
-
-
0347949052
-
-
Iler, R. K. J. Colloid Interface Sci. 1966, 21, 569. Ingersoll, D.; Kulesza, P. J.; Faulkner, L. R. J. Electrochem. Soc. 1994, 141, 140. Cheung, J. H.; Fou, A. F.; Rubner, M. F. Thin Solid Films 1994, 244, 985.
-
(1966)
J. Colloid Interface Sci.
, vol.21
, pp. 569
-
-
Iler, R.K.1
-
18
-
-
0028288029
-
-
Iler, R. K. J. Colloid Interface Sci. 1966, 21, 569. Ingersoll, D.; Kulesza, P. J.; Faulkner, L. R. J. Electrochem. Soc. 1994, 141, 140. Cheung, J. H.; Fou, A. F.; Rubner, M. F. Thin Solid Films 1994, 244, 985.
-
(1994)
J. Electrochem. Soc.
, vol.141
, pp. 140
-
-
Ingersoll, D.1
Kulesza, P.J.2
Faulkner, L.R.3
-
19
-
-
0028439409
-
-
Iler, R. K. J. Colloid Interface Sci. 1966, 21, 569. Ingersoll, D.; Kulesza, P. J.; Faulkner, L. R. J. Electrochem. Soc. 1994, 141, 140. Cheung, J. H.; Fou, A. F.; Rubner, M. F. Thin Solid Films 1994, 244, 985.
-
(1994)
Thin Solid Films
, vol.244
, pp. 985
-
-
Cheung, J.H.1
Fou, A.F.2
Rubner, M.F.3
-
20
-
-
0027910801
-
-
Schmitt, J.; Grünewald, T.; Decher, G.; Pershan, P. S.; Kjaer, K.; Lösche, M. Macromolecules 1993, 26, 7058.
-
(1993)
Macromolecules
, vol.26
, pp. 7058
-
-
Schmitt, J.1
Grünewald, T.2
Decher, G.3
Pershan, P.S.4
Kjaer, K.5
Lösche, M.6
-
22
-
-
0000939174
-
-
For additional examples of systems that use inorganic sheet minerals in an electrostatic assembly scheme, see: Keller, S. W.; Kim, H.-N.; Mallouk, T. E. J. Am. Chem. Soc. 1994, 116, 8817. Keller, S. W.; Johnson, S. A.; Brigham, E. S.; Yonemoto, E. H.; Mallouk, T. E. J. Am. Chem. Soc. 1995, 117, 12879. Kotov, N. A.; Dékány, I.; Fendler, J. H. J. Phys. Chem. 1995, 99, 13065.
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 8817
-
-
Keller, S.W.1
Kim, H.-N.2
Mallouk, T.E.3
-
23
-
-
0000714903
-
-
For additional examples of systems that use inorganic sheet minerals in an electrostatic assembly scheme, see: Keller, S. W.; Kim, H.-N.; Mallouk, T. E. J. Am. Chem. Soc. 1994, 116, 8817. Keller, S. W.; Johnson, S. A.; Brigham, E. S.; Yonemoto, E. H.; Mallouk, T. E. J. Am. Chem. Soc. 1995, 117, 12879. Kotov, N. A.; Dékány, I.; Fendler, J. H. J. Phys. Chem. 1995, 99, 13065.
-
(1995)
J. Am. Chem. Soc.
, vol.117
, pp. 12879
-
-
Keller, S.W.1
Johnson, S.A.2
Brigham, E.S.3
Yonemoto, E.H.4
Mallouk, T.E.5
-
24
-
-
0029354796
-
-
For additional examples of systems that use inorganic sheet minerals in an electrostatic assembly scheme, see: Keller, S. W.; Kim, H.-N.; Mallouk, T. E. J. Am. Chem. Soc. 1994, 116, 8817. Keller, S. W.; Johnson, S. A.; Brigham, E. S.; Yonemoto, E. H.; Mallouk, T. E. J. Am. Chem. Soc. 1995, 117, 12879. Kotov, N. A.; Dékány, I.; Fendler, J. H. J. Phys. Chem. 1995, 99, 13065.
-
(1995)
J. Phys. Chem.
, vol.99
, pp. 13065
-
-
Kotov, N.A.1
Dékány, I.2
Fendler, J.H.3
-
25
-
-
0342459190
-
-
9 The ellipsometric thickness of the layers thus formed was 2.5 nm, and the advancing contact angles of water and hexadecane were 112-114° and 42-43°, respectively. Receding contact angles for the two liquids on this surface were 101-106° and 40-42°, respectively. Silver substrates were prepared by the thermal evaporation of at least 90 nm of silver (99.99+%, Aldrich) onto a silicon wafer that had been treated with dilute aqueous hydrofluoric acid to remove the native oxide, and were broken into small pieces before use. To prepare SAMs, these pieces were treated for 1-3 h in ∼13 mM solutions of hexadecanethiol (HDT, Aldrich) in ethanol, followed by rinsing with ethanol. The advancing contact angles of water and hexadecane on this surface were 112-115° and 44-46°, respectively, and the receding contact angles of these liquids were 100-103° and 37-40°, respectively. These contact angles are similar to those reported by others for ordered monolayers [see ref 18 and: Laibinis, P. E.; Whitesides, G. M.; Allara, D. L.; Tao, Y.-T.; Parikh, A. N.; Nuzzo, R. G. J. Am. Chem, Soc. 1991, 113, 7152].
-
(1991)
J. Am. Chem, Soc.
, vol.113
, pp. 7152
-
-
Laibinis, P.E.1
Whitesides, G.M.2
Allara, D.L.3
Tao, Y.-T.4
Parikh, A.N.5
Nuzzo, R.G.6
-
26
-
-
12044252133
-
-
Walczak, M. M.; Chung, C.; Stole, S. M.; Widrig, C. A.; Porter, M. D. J. Am. Chem. Soc. 1991, 113, 2370.
-
(1991)
J. Am. Chem. Soc.
, vol.113
, pp. 2370
-
-
Walczak, M.M.1
Chung, C.2
Stole, S.M.3
Widrig, C.A.4
Porter, M.D.5
-
27
-
-
85033828597
-
-
2
-
2.
-
-
-
-
28
-
-
85033822962
-
-
note
-
13 These particles adsorbed by altering the structure of the physisorbed monolayers, or removing them altogether, in contrast to our findings for adsorption of PDDA and Laponite onto chemisorbed SAMs.
-
-
-
-
29
-
-
85033807775
-
-
note
-
To avoid ambiguity, we use the word "imperfections", rather than "defects", to refer to the flaws within the SAMs themselves that allow the nucleation of the multilayered films.
-
-
-
-
30
-
-
0000117927
-
-
4) probe tip. The scan rate was 0.5 Hz, and the images were tilt-corrected. Repeated scans over the same area gave similar images, indicating that no damage to the samples was occurring.
-
(1995)
Chem. Mater.
, vol.7
, pp. 2327
-
-
Kleinfeld, E.R.1
Ferguson, G.S.2
-
31
-
-
85033807752
-
-
note
-
The height scales in these AFM images provide information about the relative heights of features in the two samples; a value of O on those scales does not necessarily imply that the probe tip touched the Ag or SAM surface.
-
-
-
-
32
-
-
85033815978
-
-
note
-
Quantitative analysis of the data showed that the film formed on the SAM was more than twice as rough as the film formed on bare Ag (60 Å root-mean-square (rms) roughness vs 26 Å). An AFM image of a SAM-coated Ag surface, which should have a topology nearly identical with that of a bare Ag surface, was very similar in appearance to the image in Figure 4b and had an rms roughness of 18 Å. The uncertainty in these values of rms roughness is ±5 Å.
-
-
-
-
33
-
-
0004224011
-
-
Prentice Hall: Englewood Cliffs, NJ
-
18 The silicon used in this work (Wacker Siltronic) was p-doped and therefore conducting (resistivity 0.2-70 Ω cm) but was covered with an oxide approximately 1.5 nm in thickness. The force of attraction between a point charge and an infinite, planar, grounded conductor falls off as the inverse square of the distance between them (see: Griffiths, D. J. Introduction to Electrodynamics, 2nd ed.; Prentice Hall: Englewood Cliffs, NJ, 1989; pp 121-124).
-
(1989)
Introduction to Electrodynamics, 2nd Ed.
, pp. 121-124
-
-
Griffiths, D.J.1
-
34
-
-
85033828483
-
-
note
-
3 for 5-7 min, producing films with an ellipsometric thickness of 1.3 nm. Advancing and receding contact angles of water on this surface, 105-108° and 99-101°, respectively, were lower than would be expected for complete SAMs. The advancing and receding contact angles of hexadecane were surprisingly high: 42-43° and 41-42°.
-
-
-
|