메뉴 건너뛰기




Volumn 41, Issue 2, 1990, Pages 768-783

Relaxation properties and ergodicity breaking in nonlinear Hamiltonian dynamics

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0000569924     PISSN: 10502947     EISSN: None     Source Type: Journal    
DOI: 10.1103/PhysRevA.41.768     Document Type: Article
Times cited : (195)

References (70)
  • 3
    • 84931513380 scopus 로고    scopus 로고
    • E. Fermi, J. Pasta, and S. Ulam, in Collected Papers of E. Fermi, edited by E. Segré (University of Chicago, Chicago, 1965), Vol. 2, p. 978.
  • 4
    • 84931513384 scopus 로고    scopus 로고
    • H. Poincaré, Les Méthodes Nouvelles de la Méchanique Celeste (Blanchard, Paris, 1987), Vol. 3, p. 389.
  • 6
    • 84931513383 scopus 로고    scopus 로고
    • H. Poincaré, see Ref. 4, Vol. 3;
  • 7
    • 0037618855 scopus 로고
    • Dimostrazione che in generale un sistema meccanico normale È QUASI — ergodico
    • (1923) Il Nuovo Cimento , vol.25 , pp. 267
    • Fermi, E.1
  • 8
    • 0043078472 scopus 로고
    • Generalizzazione del teorema di incrÈ sopra la non esistenza di integeali uniformi di un sistema di equazioni canoniche normali.
    • (1923) Il Nuovo Cimento , vol.26 , pp. 105
    • Fermi, E.1
  • 10
  • 18
    • 84931513378 scopus 로고    scopus 로고
    • M. Vittot, Ph.D. thesis, Université de Provence, Marseille (1985).
  • 23
    • 84931513377 scopus 로고    scopus 로고
    • We have dropped a power-law prefactor which appears in the literature with different exponents (typically 1 or 1/2 ), depending on the technical details of the demonstrations.
  • 25
    • 84931513379 scopus 로고    scopus 로고
    • The expression ``ergodicity breaking'' has been borrowed from this paper.
  • 30
    • 84931513373 scopus 로고    scopus 로고
    • Commun. Math. Phys. (to be published).
  • 52
    • 84931513374 scopus 로고    scopus 로고
    • S. Teitel (unpublished); C. P. Bachas and B. A. Huberman, Stanford Linear Accelerator Center Report No. 4077, 1987 (unpublished).
  • 68
    • 84931513376 scopus 로고    scopus 로고
    • F. M. Izrailev suggested to us that the thickness of the stochastic layers could be ``renormalized'' by the overlapping of secondary resonances, as it occurs in modulational diffusion. This could make the ``bare'' Arnold diffusion much more efficient.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.