-
2
-
-
11644306106
-
-
Wolynes, P. G. Annu. Rev. Phys. Chem. 1980, 31, 345.
-
(1980)
, vol.31
, pp. 345
-
-
Chem, A.R.P.1
-
3
-
-
36749107872
-
-
(a) Nakahara, M.; Török, T.; Takisawa, N.; Osugi, J. J. Chem. Phys. 1982, 76, 5145.
-
(1982)
J. Chem. Phys.
, vol.76
, pp. 5145
-
-
Nakahara, M.1
Török, T.2
Takisawa, N.3
Osugi, J.4
-
4
-
-
11644301987
-
-
(b) Nakahara, M.; Osugi, J.; Takisawa, N. J. Phys. Chem. 1981, 85, 3582.
-
(1981)
J. Phys. Chem.
, vol.85
, pp. 3582
-
-
Nakahara, M.1
Osugi, J.2
Takisawa, N.3
-
5
-
-
0000990870
-
-
(c) Takisawa, N.; Osugi, J.; Nakahara, M. J. Chem. Phys. 1982, 77, 4717.
-
(1982)
J. Chem. Phys.
, vol.77
, pp. 4717
-
-
Takisawa, N.1
Osugi, J.2
Nakahara, M.3
-
6
-
-
0000329203
-
-
(d) Takisawa, N.; Osugi, J.; Nakahara, M. J. Chem. Phys. 1983, 78, 2591.
-
(1983)
J. Chem. Phys.
, vol.78
, pp. 2591
-
-
Takisawa, N.1
Osugi, J.2
Nakahara, M.3
-
10
-
-
84858567570
-
-
Kato, T.; Umemura, J.; Takenaka, T. Mol. Phys. 1978, 36, 621.
-
(1978)
Mol. Phys.
, vol.36
, pp. 621
-
-
Kato, T.1
Umemura, J.2
Takenaka, T.3
-
12
-
-
0000161616
-
-
(a) Adachi, A.; Kiyoyama, H.; Nakahara, M.; Masuda, Y.; Yamatera, H.; Shimizu, A.; Taniguchi, Y. J. Chem. Phys. 1989, 90, 392.
-
(1989)
J. Chem. Phys.
, vol.90
, pp. 392
-
-
Adachi, A.1
Kiyoyama, H.2
Nakahara, M.3
Masuda, Y.4
Yamatera, H.5
Shimizu, A.6
Taniguchi, Y.7
-
13
-
-
0011574106
-
-
(b) Nakahara, M.; Adachi, A.; Kiyoyama, H.; Shimizu, A.; Taniguchi, Y.; Masuda, Y. J. Phys. Chem. 1990, 94, 6179.
-
(1990)
J. Phys. Chem.
, vol.94
, pp. 6179
-
-
Nakahara, M.1
Adachi, A.2
Kiyoyama, H.3
Shimizu, A.4
Taniguchi, Y.5
Masuda, Y.6
-
15
-
-
33845378703
-
-
Masuda, Y.; Sano, M.; Yamatera, H. J. Phys. Chem. 1985, 89, 3086.
-
(1985)
J. Phys. Chem.
, vol.89
, pp. 3086
-
-
Masuda, Y.1
Sano, M.2
Yamatera, H.3
-
23
-
-
0000050019
-
-
Masuda, Y.; Yamatera, H. J. Chem. Soc., Faraday Trans. 1 1985, 81, 127.
-
(1985)
J. Chem. Soc., Faraday Trans. 1
, vol.81
, pp. 127
-
-
Masuda, Y.1
Yamatera, H.2
-
33
-
-
0342755334
-
-
(b) Wasylishen, R. E.; Pettitt, B. A.; Danchura, W. Can. J. Chem. 1977, 55, 3602.
-
(1977)
Can. J. Chem.
, vol.55
, pp. 3602
-
-
Wasylishen, R.E.1
Pettitt, B.A.2
Danchura, W.3
-
35
-
-
11644264130
-
-
note
-
2r vs η/T for some solvents over a wide temperature range also curved downward with decreasing η/T and gave a negligibly small or no zero-intercept.
-
-
-
-
36
-
-
11644250357
-
-
note
-
The C values will be smaller if one considers a zero-intercept.
-
-
-
-
42
-
-
0001479785
-
-
(b) Hartman, R. S.; Alavi, D. S.; Waldeck, D. H. J. Phys. Chem. 1991, 95, 7872.
-
(1991)
J. Phys. Chem.
, vol.95
, pp. 7872
-
-
Hartman, R.S.1
Alavi, D.S.2
Waldeck, D.H.3
-
46
-
-
0000799930
-
-
Bauer, D. R.; Brauman, J. I.; Pecora, R. J. Am. Chem. Soc. 1974, 96, 6840.
-
(1974)
J. Am. Chem. Soc.
, vol.96
, pp. 6840
-
-
Bauer, D.R.1
Brauman, J.I.2
Pecora, R.3
-
47
-
-
0031555731
-
-
and references therein
-
Horng, M.-L.; Gardecki, J. A.; Maroncelli, M. J. Phys. Chem. 1997, 101, 1030 and references therein.
-
(1997)
J. Phys. Chem.
, vol.101
, pp. 1030
-
-
Horng, M.-L.1
Gardecki, J.A.2
Maroncelli, M.3
-
49
-
-
0040232920
-
-
and references therein
-
Waldeck, D. H. Chem. Res. 1991, 91, 415 and references therein.
-
(1991)
Chem. Res.
, vol.91
, pp. 415
-
-
Waldeck, D.H.1
-
51
-
-
33750109348
-
-
and references therein
-
(b) Marroncelli, M.; MacInnis, J.; Fleming, G. R. Science 1989, 243, 1674 and references therein.
-
(1989)
Science
, vol.243
, pp. 1674
-
-
Marroncelli, M.1
MacInnis, J.2
Fleming, G.R.3
-
54
-
-
0001175877
-
-
α dependence of the rotational relaxation times, particularly of nonpolar molecules has often been discussed with quasi-hydrodynamic models considering the volume of a solvent molecule relative to that of solute; e.g., the Gierer-Wirtz microviscosity theory (Z. Naturforsch. A 1953, 8, 532) and the Dote-Kivelson-Schwartz free space model (J. Phys. Chem. 1981, 85, 2169). Application of these models to the perchlorate rotation showed quite a poor correlation between the calculated and the observed rotational relaxation times in the solvents used in the present study.
-
(1953)
Z. Naturforsch. A
, vol.8
, pp. 532
-
-
-
55
-
-
11544258774
-
-
α dependence of the rotational relaxation times, particularly of nonpolar molecules has often been discussed with quasi-hydrodynamic models considering the volume of a solvent molecule relative to that of solute; e.g., the Gierer-Wirtz microviscosity theory (Z. Naturforsch. A 1953, 8, 532) and the Dote-Kivelson-Schwartz free space model (J. Phys. Chem. 1981, 85, 2169). Application of these models to the perchlorate rotation showed quite a poor correlation between the calculated and the observed rotational relaxation times in the solvents used in the present study.
-
(1981)
J. Phys. Chem.
, vol.85
, pp. 2169
-
-
-
56
-
-
11644327114
-
-
note
-
Such an anomaly in alcohols has not been reported for nitrate ion (ref 16), which might be attributed to a slightly larger negative charge on the oxygens of the nitrate ion and/or its nonspherical shape. However, the main reason for the difference in the feature of the plots for the nitrate and the perchlorate ion is probably the choice of solvents; that is, the 12, values of the nitrate ion were given only in water and acetonitrile other than alcohols.
-
-
-
-
57
-
-
33644912652
-
-
Barthel, J.; Bachhuber, K.; Hetzenauer, H. Chem. Phys. Lett. 1990, 165, 369.
-
(1990)
Chem. Phys. Lett.
, vol.165
, pp. 369
-
-
Barthel, J.1
Bachhuber, K.2
Hetzenauer, H.3
-
58
-
-
0004103775
-
Transport, Relaxation, and Kinetic Processes in Electrolyte Solutions
-
Springer-Verlag: Berlin, Chapter VII
-
Turq, P.; Barthel, J.; Chemla, M. Transport, Relaxation, and Kinetic Processes in Electrolyte Solutions; Springer-Verlag: Berlin, 1992; Lecture Notes in Chemistry, Vol. 57, Chapter VII.
-
(1992)
Lecture Notes in Chemistry
, vol.57
-
-
Turq, P.1
Barthel, J.2
Chemla, M.3
-
59
-
-
0001670105
-
-
(a) Weaver, M. J.; McManis, G. E.; Jarzeba, W.; Barbara, P. F. J. Phys. Chem. 1990, 94, 1715.
-
(1990)
J. Phys. Chem.
, vol.94
, pp. 1715
-
-
Weaver, M.J.1
McManis, G.E.2
Jarzeba, W.3
Barbara, P.F.4
-
60
-
-
0001750549
-
-
(b) McManis, G. E.; Golovin, M. N.; Weaver, M. J. J. Phys. Chem. 1986, 90, 6563.
-
(1986)
J. Phys. Chem.
, vol.90
, pp. 6563
-
-
McManis, G.E.1
Golovin, M.N.2
Weaver, M.J.3
-
63
-
-
11644291419
-
-
note
-
The stick boundary condition was assumed for the calculation. If one applies the perfect slip boundary, then a similar linear relation is obtained (the slope is 0.88).
-
-
-
-
65
-
-
0003681541
-
-
Conway, B. E., Barradas, R. G., Eds.; John Wiley & Sons: New York
-
(b) Frank, H. S. Chemical Physics of Ionic Solutions; Conway, B. E., Barradas, R. G., Eds.; John Wiley & Sons: New York, 1966; p 60.
-
(1966)
Chemical Physics of Ionic Solutions
, pp. 60
-
-
Frank, H.S.1
-
66
-
-
0031555731
-
-
Horng, M, -L.; Gardecki, J. A.; Maroncelli, M. J. Phys. Chem. A 1997, 101, 1030.
-
(1997)
J. Phys. Chem. A
, vol.101
, pp. 1030
-
-
Horng, M.L.1
Gardecki, J.A.2
Maroncelli, M.3
-
67
-
-
36749108527
-
-
The hydrodynamic friction for the rotation of a nonspherical molecule remains even when the perfect slip boundary condition is assumed. (Hu, C.-M.; Zwanzig, R. J. Chem. Phys. 1974, 60, 4354).
-
(1974)
J. Chem. Phys.
, vol.60
, pp. 4354
-
-
Hu, C.-M.1
Zwanzig, R.2
|