메뉴 건너뛰기




Volumn 57, Issue 2, 1998, Pages 2331-2337

Solitons and diffusive modes in the noiseless Burgers equation: Stability analysis

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0000563817     PISSN: 1063651X     EISSN: None     Source Type: Journal    
DOI: 10.1103/PhysRevE.57.2331     Document Type: Article
Times cited : (24)

References (42)
  • 4
    • 85037254202 scopus 로고    scopus 로고
    • The Nonlinear Diffusion Equation (Riedel, Dordrecht, 1974)
    • The Nonlinear Diffusion Equation (Riedel, Dordrecht, 1974).
  • 5
    • 85037234170 scopus 로고    scopus 로고
    • P. G. Saffman in Topics in Nonlinear Physics, edited by N. J. Zabusky (Springer, New York, 1968)
    • P. G. Saffman in Topics in Nonlinear Physics, edited by N. J. Zabusky (Springer, New York, 1968).
  • 23
    • 0000755161 scopus 로고    scopus 로고
    • Phys. Rev. Lett. 78, 1452 (1997).
    • (1997) Phys. Rev. Lett. , vol.78 , pp. 1452
  • 37
    • 0004248935 scopus 로고
    • Springer-Verlag, Berlin, A. R. Bishop, T. Schneider
    • Solitons and Condensed Matter, edited by A. R. Bishop and T. Schneider (Springer-Verlag, Berlin, 1978);
    • (1978) Solitons and Condensed Matter
  • 38
    • 0003471311 scopus 로고
    • Springer-Verlag, Berlin, J. Bernasconi, T. Schneider
    • Physics in One Dimension, edited by J. Bernasconi and T. Schneider (Springer-Verlag, Berlin, 1981).
    • (1981) Physics in One Dimension
  • 39
    • 85037243839 scopus 로고    scopus 로고
    • It is interesting to notice that a quick but fallacious back of the envelope argument applied to Eq. (4.1) in the limit [Formula Presented] where [Formula Presented] vanishes, yields the complex dispersion law [Formula Presented] The correct result [Formula Presented] following from Eq. (4.3) is, of course, due to the influence of the term [Formula Presented] at long distances
    • It is interesting to notice that a quick but fallacious back of the envelope argument applied to Eq. (4.1) in the limit x→±∞, where ∇u0 vanishes, yields the complex dispersion law ω=-iνk2-λu0k. The correct result ω=-iν(k2+ks2), following from Eq. (4.3) is, of course, due to the influence of the term ∇u0∝cosh-2[ks(x-x0)] at long distances.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.