-
2
-
-
0029639460
-
-
Chumanov, G.; Sokolov, K.; Gregory, B. W.; Cotton, T. M. J. Phys. Chem. 1995, 99, 9466.
-
(1995)
J. Phys. Chem.
, vol.99
, pp. 9466
-
-
Chumanov, G.1
Sokolov, K.2
Gregory, B.W.3
Cotton, T.M.4
-
4
-
-
84975595232
-
-
Hache, F.; Klein, R. D.; Flytzanis, C. J. Opt. Soc. Am. B 1986, 3, 1647.
-
(1986)
J. Opt. Soc. Am. B
, vol.3
, pp. 1647
-
-
Hache, F.1
Klein, R.D.2
Flytzanis, C.3
-
5
-
-
0000452421
-
-
Flytzanis C.; Hache, F.; Klein, M. C.; Richard, D.; Roussingnol, P. In Progress in Optics; Wolf, E., Ed., North-Holland: Amsterdam, 1991, 29, 323.
-
(1991)
Progress in Optics; Wolf, E., Ed., North-Holland: Amsterdam
, vol.29
, pp. 323
-
-
Flytzanis, C.1
Hache, F.2
Klein, M.C.3
Richard, D.4
In, R.P.5
-
6
-
-
0032649991
-
-
Sandrock, M. L.; Pibel, C. D.; Geiger, F. M.; Foss, C. A., Jr. J. Phys. Chem. B. 1999, 103, 2668.
-
(1999)
J. Phys. Chem. B.
, vol.103
, pp. 2668
-
-
Sandrock, M.L.1
Pibel, C.D.2
Geiger, F.M.3
Foss, C.A.4
Jr5
-
7
-
-
0032507285
-
-
Storhoff, J. J.; Elehanian, R.; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc. 1998, 120, 1959.
-
(1998)
J. Am. Chem. Soc.
, vol.120
, pp. 1959
-
-
Storhoff, J.J.1
Elehanian, R.2
Mucic, R.C.3
Mirkin, C.A.4
Letsinger, R.L.5
-
8
-
-
33646020278
-
-
Liao, P. F. In Surface Enhanced Roman Scattering; Chang, R. K., Furtak, T. E., Eds.; Plenum Press: New York, 1982.
-
(1982)
Surface Enhanced Roman Scattering; Chang, R. K., Furtak, T. E., Eds.; Plenum Press: New York
-
-
In, L.P.F.1
-
13
-
-
33751158242
-
-
Foss, C. A., Jr.; Hornyak, G. L.; Stockert, J. A.; Martin, C. R. J. Phys. Chem. 1994, 98, 2963.
-
(1994)
J. Phys. Chem.
, vol.98
, pp. 2963
-
-
Foss, C.A.1
Jr2
Hornyak, G.L.3
Stockert, J.A.4
Martin, C.R.5
-
14
-
-
0031213466
-
-
Yu, Y.; Chang, S.; Lee, C.; Wang, C. R. C. J. Phys. Chem. B 1997, 101, 6661.
-
(1997)
J. Phys. Chem. B
, vol.101
, pp. 6661
-
-
Yu, Y.1
Chang, S.2
Lee, C.3
Wang, C.R.C.4
-
15
-
-
0032495401
-
-
AI-Rawashdeh, N. R.; Sandrock, M. L.; Seugling, C. J.; Foss, C. A., Jr. J. Phys. Chem. B 1998, 102, 361.
-
(1998)
J. Phys. Chem. B
, vol.102
, pp. 361
-
-
Ai-Rawashdeh, N.R.1
Sandrock, M.L.2
Seugling, C.J.3
Foss, C.A.4
Jr5
-
16
-
-
0000303728
-
-
El-Kouedi, M.; Sandrock, M. L.; Seugling, C. J.; Foss, C. A., Jr. Chem Maler. 1998, 10, 3287.
-
(1998)
Chem Maler.
, vol.10
, pp. 3287
-
-
El-Kouedi, M.1
Sandrock, M.L.2
Seugling, C.J.3
Foss, C.A.4
Jr5
-
20
-
-
0343462469
-
-
Schmitt, J.; Machtle, P.; Eck, D.; Mohwald, H.; Helm, C. A. Langmuir 1999, 75,3256.
-
(1999)
Langmuir
, vol.75
, pp. 3256
-
-
Schmitt, J.1
Machtle, P.2
Eck, D.3
Mohwald, H.4
Helm, C.A.5
-
21
-
-
33750097576
-
-
Furneaux, R. C.; Rigby, W. R.; Davidson, A. P. Nature 1989,337, 147.
-
(1989)
Nature
, vol.337
, pp. 147
-
-
Furneaux, R.C.1
Rigby, W.R.2
Davidson, A.P.3
-
22
-
-
33646042769
-
-
Shumilova, N. A.; Zutaeva, E. V. In Encyclopedia of Electrochemistry of the Elements; Bard, A. J., Ed.; Marcel-Dekker: New York, 1978, 8.
-
(1978)
Encyclopedia of Electrochemistry of the Elements; Bard, A. J., Ed.; Marcel-Dekker: New York
, pp. 8
-
-
Shumilova, N.A.1
In, Z.E.V.2
-
23
-
-
33646066491
-
-
(23) The dimensions of the particles were determined from TEM images. The average length, diameter, spacing distance, and standard deviations were determined from measurements of thirteen to twenty individual structures.
-
, vol.23
-
-
-
26
-
-
0347144344
-
-
Pullman, B., Jortner, J., Nitzan, A., Gerber, B., Eds.; Reidel: Dordrecht, Holland
-
(b) Zeman, E. J.; Schatz, G. C. In Proceedings of the 17th Jerusalem Symposium; Pullman, B., Jortner, J., Nitzan, A., Gerber, B., Eds.; Reidel: Dordrecht, Holland, 1984;p 413.
-
(1984)
Proceedings of the 17th Jerusalem Symposium
, pp. 413
-
-
Zeman, E.J.1
In, S.G.C.2
-
27
-
-
85087227181
-
-
cxt values were calculated at 4 nm intervals from 350 to 800 nm and plotted as continuous curves using Excel software.
-
, vol.26
-
-
-
31
-
-
0000119583
-
-
Jensen, T.; Kelly, L.; Lazarides, A.; Schatz, G. C. J. Cluster Sei. 1999, 10, 295.
-
(1999)
J. Cluster Sei.
, vol.10
, pp. 295
-
-
Jensen, T.1
Kelly, L.2
Lazarides, A.3
Schatz, G.C.4
-
32
-
-
33646033343
-
-
note
-
In the computation of extinction spectra using the DDSCAT program, the selection of an insufficient number of polarizable elements results in spectral oscillations on the long wavelength side of the plasmon resonance maximum. For each of the spectra in Figure 8, the number of polarizable elements was increased until the oscillations disappeared. We find that the number of polarizable elements required to prevent such oscillations increases as the interparticle spacing decreases.
-
-
-
-
33
-
-
33646023891
-
-
note
-
In the study reported in ref 15, porous aluminum oxide films containing Au rods were impregnated with polyethylene and then exposed to base to dissolve all of the alumina. The Au rods were then mechanically oriented in the plane of the polyethylene film surface. Normal incidence plasmon resonance spectra were obtained at various polarization angles relative to the direction of rod orientation. Significantly, under conditions of parallel polarization, the spectra of the Au rod systems indicated long wavelength resonance bands arising from the particles' long axes. Short wavelength resonances were either absent or present only at very low intensity (consistent with either imperfect orientation of the rod-like particles, or a very small number of spherical Au impurity particles).
-
-
-
|