-
4
-
-
0001466477
-
-
See D. W. Sciama, P. C. Waylen, and R. C. Gilman, Phys. Rev. 187, 1762 (1969), and references therein.
-
(1969)
Phys. Rev.
, vol.187
, pp. 1762
-
-
Sciama, D.W.1
Waylen, P.C.2
Gilman, R.C.3
-
13
-
-
85038336481
-
-
5,2439(1972).
-
(1972)
, vol.5
, pp. 2439
-
-
-
15
-
-
0000117440
-
-
W. E. Couch, R. J. Torrence, A. I. Janis, and E. T. Newman, J. Math. Phys. 9, 484 (1968).
-
(1968)
J. Math. Phys.
, vol.9
, pp. 484
-
-
Couch, W.E.1
Torrence, R.J.2
Janis, A.I.3
Newman, E.T.4
-
18
-
-
0001706230
-
-
C. Cutler, T. A. Apostolatos, L. Bildsten, L. S. Finn, E. E. Flanagan, D. Kennefick, D. M. Markovic, A. Ori, E. Poisson, G. J. Sussman, and K. S. Thorne, Phys. Rev. Lett. 70, 2984 (1993).
-
(1993)
Phys. Rev. Lett.
, vol.70
, pp. 2984
-
-
Cutler, C.1
Apostolatos, T.A.2
Bildsten, L.3
Finn, L.S.4
Flanagan, E.E.5
Kennefick, D.6
Markovic, D.M.7
Ori, A.8
Poisson, E.9
Sussman, G.J.10
Thorne, K.S.11
-
22
-
-
0011490655
-
-
A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, Science 256, 325 (1992).
-
(1992)
Science
, vol.256
, pp. 325
-
-
Abramovici, A.1
Althouse, W.E.2
Drever, R.W.P.3
Gürsel, Y.4
Kawamura, S.5
Raab, F.J.6
Shoemaker, D.7
Sievers, L.8
Spero, R.E.9
Thorne, K.S.10
Vogt, R.E.11
Weiss, R.12
Whitcomb, S.E.13
Zucker, M.E.14
-
23
-
-
33846659644
-
-
C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Linet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, and G. Natale, Nucl. Instrum. Methods Phys. Res. A 289, 518 (1990).
-
(1990)
Nucl. Instrum. Methods Phys. Res. A
, vol.289
, pp. 518
-
-
Bradaschia, C.1
Del Fabbro, R.2
Di Virgilio, A.3
Giazotto, A.4
Kautzky, H.5
Montelatici, V.6
Passuello, D.7
Brillet, A.8
Cregut, O.9
Hello, P.10
Man, C.N.11
Manh, P.T.12
Marraud, A.13
Shoemaker, D.14
Linet, J.Y.15
Barone, F.16
Di Fiore, L.17
Milano, L.18
Russo, G.19
Aguirregabiria, J.M.20
Bel, H.21
Duruisseau, J.P.22
Le Denmat, G.23
Tourrenc, P.24
Capozzi, M.25
Longo, M.26
Lops, M.27
Pinto, I.28
Rotoli, G.29
Damour, T.30
Bonazzola, S.31
Marck, J.A.32
Gourghoulon, Y.33
Holloway, L.E.34
Fuligni, F.35
Iafolla, V.36
Natale, G.37
more..
-
26
-
-
0009257212
-
-
M. Shibata, M. Sasaki, H. Tagoshi, and T. Tanaka, Phys. Rev. D 51, 1646 (1995).
-
(1995)
Phys. Rev. D
, vol.51
, pp. 1646
-
-
Shibata, M.1
Sasaki, M.2
Tagoshi, H.3
Tanaka, T.4
-
28
-
-
85038332099
-
-
Calculation shows that this conclusion is expected to be true only for electromagnetic and gravitational radiation. For scalar radiation, the spacetime's rotation does not affect the radiative multipole moments at order (Formula presented)
-
Calculation shows that this conclusion is expected to be true only for electromagnetic and gravitational radiation. For scalar radiation, the spacetime's rotation does not affect the radiative multipole moments at order (Formula presented).
-
-
-
-
33
-
-
0030508013
-
-
A powerful method to integrate the Regge-Wheeler equation to high order in (Formula presented) was recently devised by S. Mano, H. Susuki, and E. Takasugi, Prog. Theor. Phys. 96, 549 (1996).
-
(1996)
Prog. Theor. Phys.
, vol.96
, pp. 549
-
-
Mano, S.1
Susuki, H.2
Takasugi, E.3
-
43
-
-
85038326390
-
-
The relation (Formula presented) stays approximately valid even when the mass (Formula presented) is spatially extended, because by virtue of the weak-field approximation, the solid angle subtended by the mass, as seen from the field point (Formula presented), is much smaller than the solid angle subtended by the source itself
-
The relation (Formula presented) stays approximately valid even when the mass (Formula presented) is spatially extended, because by virtue of the weak-field approximation, the solid angle subtended by the mass, as seen from the field point (Formula presented), is much smaller than the solid angle subtended by the source itself.
-
-
-
-
44
-
-
0003498504
-
-
Academic, Orlando, FL
-
I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products (Academic, Orlando, FL, 1980).
-
(1980)
Table of Integrals, Series, and Products
-
-
Gradshteyn, I.S.1
Ryzhik, I.M.2
-
45
-
-
85038294960
-
-
This relation follows from the addition theorem for spherical harmonics, combined with exercise 12.4.6 of G. Arfken, Mathematical Methods for Physicists (Academic, Orlando, FL, 1985)
-
This relation follows from the addition theorem for spherical harmonics, combined with exercise 12.4.6 of G. Arfken, Mathematical Methods for Physicists (Academic, Orlando, FL, 1985).
-
-
-
-
46
-
-
85038328183
-
-
See, for example, S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972), p. 181
-
See, for example, S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972), p. 181.
-
-
-
-
47
-
-
9444252737
-
-
J. N. Goldberg, A. J. MacFarlane, E. T. Newman, F. Rohrlich, and E. C. G. Sudarshan, J. Math. Phys. 8, 2155 (1967).
-
(1967)
J. Math. Phys.
, vol.8
, pp. 2155
-
-
Goldberg, J.N.1
MacFarlane, A.J.2
Newman, E.T.3
Rohrlich, F.4
Sudarshan, E.C.G.5
|