메뉴 건너뛰기




Volumn 12, Issue 1, 2000, Pages 217-228

Spatial analyticity on the global attractor for the Kuramoto-Sivashinsky equation

Author keywords

analyticity in the space variable; attractors; Kuramoto sivashinsky equation; spatial chaos

Indexed keywords


EID: 0000502465     PISSN: 10407294     EISSN: 15729222     Source Type: Journal    
DOI: 10.1023/A:1009002920348     Document Type: Article
Times cited : (31)

References (11)
  • 1
    • 21144482383 scopus 로고
    • A global attracting set for the Kuramoto-Sivashinsky equation
    • Collet, P., Eckmann, J.-P., Epstein, H., and Stubbe, J. (1993). A global attracting set for the Kuramoto-Sivashinsky equation. Commun. Math. Phys. 152, 203-214.
    • (1993) Commun. Math. Phys. , vol.152 , pp. 203-214
    • Collet, P.1    Eckmann, J.-P.2    Epstein, H.3    Stubbe, J.4
  • 2
    • 11744315490 scopus 로고
    • Analyticity for the Kuramoto-Sivashinsky equation
    • Collet, P., Eckmann, J.-P., Epstein, H., and Stubbe, J. (1993). Analyticity for the Kuramoto-Sivashinsky equation. Physica D 67, 321-326.
    • (1993) Physica D , vol.67 , pp. 321-326
    • Collet, P.1    Eckmann, J.-P.2    Epstein, H.3    Stubbe, J.4
  • 3
    • 0003088833 scopus 로고
    • Spectral barriers and inertial manifolds for dissipative partial differential equations
    • Constantin, P., Foias, C, Nicolaenko, B., and Temam, R. (1989). Spectral barriers and inertial manifolds for dissipative partial differential equations. J. Dynam. Diff. Eq. 1, No. 1, 45-73.
    • (1989) J. Dynam. Diff. Eq. , vol.1 , Issue.1 , pp. 45-73
    • Constantin, P.1    Foias, C.2    Nicolaenko, B.3    Temam, R.4
  • 4
    • 33746636159 scopus 로고
    • Gevrey class regularity for the solutions of the Navier-Stokes equations
    • Foias, C., Temam, R. (1989). Gevrey class regularity for the solutions of the Navier-Stokes equations. J. Funct. Anal. 87, 359-369.
    • (1989) J. Funct. Anal. , vol.87 , pp. 359-369
    • Foias, C.1    Temam, R.2
  • 5
    • 0022755962 scopus 로고
    • Viscoelastic behavior of cellular solutions to the Kuramoto Sivashinsky model
    • Frisch, U., She, Z.-S., and Thual, O. (1986). Viscoelastic behavior of cellular solutions to the Kuramoto Sivashinsky model. J. Fluid Mech. 168, 221-240.
    • (1986) J. Fluid Mech. , vol.168 , pp. 221-240
    • Frisch, U.1    She, Z.-S.2    Thual, O.3
  • 6
    • 52849129714 scopus 로고    scopus 로고
    • private communication
    • Kukavica, I., private communication.
    • Kukavica, I.1
  • 7
    • 0001551523 scopus 로고
    • Oscillations of solutions of the Kuramoto-Sivashinsky equation
    • Kukavica, I. (1994). Oscillations of solutions of the Kuramoto-Sivashinsky equation. Physica D 76, 369-374.
    • (1994) Physica D , vol.76 , pp. 369-374
    • Kukavica, I.1
  • 8
    • 25544449558 scopus 로고
    • Steady solutions of the Kuramoto-Sivashinsky equation
    • Michelson, D. (1986). Steady solutions of the Kuramoto-Sivashinsky equation. Physica D 19, 89-111.
    • (1986) Physica D , vol.19 , pp. 89-111
    • Michelson, D.1
  • 10
    • 84972535814 scopus 로고
    • Estimates on the lowest dimension of inertial manifolds for the Kuramoto-Sivashinsky equation in the general case
    • Temam, R., and Wang, X. (1994). Estimates on the lowest dimension of inertial manifolds for the Kuramoto-Sivashinsky equation in the general case. Diff. and Integral Equations 7, Nos. 3-4, 1095-1168.
    • (1994) Diff. and Integral Equations , vol.7 , Issue.3-4 , pp. 1095-1168
    • Temam, R.1    Wang, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.