-
1
-
-
85036262675
-
-
For what the equilibrium dynamical exponent concerns, a very interesting historical review can be found (especially p. 301 and thereafter) in the paper by H.-O. Heuer, in Annual Review of Computational Physics IV, edited by D. Stauffer (World Scientific, Singapore, 1996), pp. 267–315
-
For what the equilibrium dynamical exponent concerns, a very interesting historical review can be found (especially p. 301 and thereafter) in the paper by H.-O. Heuer, in Annual Review of Computational Physics IV, edited by D. Stauffer (World Scientific, Singapore, 1996), pp. 267–315.
-
-
-
-
2
-
-
0001223054
-
-
H. G. Ballesteros, L. A. Fernández, V. Martín-Mayor, A. Muñoz Sudupe, J. J. Ruiz-Lorenzo, and G. Parisi, Phys. Rev. B 58, 2740 (1998).
-
(1998)
Phys. Rev. B
, vol.58
, pp. 2740
-
-
Ballesteros, H.G.1
Fernández, L.A.2
Martín-Mayor, V.3
Muñoz Sudupe, A.4
Ruiz-Lorenzo, J.J.5
Parisi, G.6
-
5
-
-
85036192846
-
-
S.-K. Ma, Modern Theory of Critical Phenomena (W. A. Benjamin, Inc., Reading, MA, 1976)
-
S.-K. Ma, Modern Theory of Critical Phenomena (W. A. Benjamin, Inc., Reading, MA, 1976).
-
-
-
-
10
-
-
0001248802
-
-
The dynamical critical exponent measured out-of-equilibrium and in-equilibrium should be the same. This fact has been shown, using an (Formula presented) expansion, in H. K. Janssen, B. Schaub, and B. Schmittmann, Z. Phys. 73, 539 (1989).
-
(1989)
Z. Phys.
, vol.73
, pp. 539
-
-
Janssen, H.K.1
Schaub, B.2
Schmittmann, B.3
-
11
-
-
0001188848
-
-
H. G. Ballesteros, L. A. Fernández, V. Martín-Mayor, A. Muñoz Sudupe, J. J. Ruiz-Lorenzo, and G. Parisi, Phys. Lett. B 400, 346 (1997).
-
(1997)
Phys. Lett. B
, vol.400
, pp. 346
-
-
Ballesteros, H.G.1
Fernández, L.A.2
Martín-Mayor, V.3
Muñoz Sudupe, A.4
Ruiz-Lorenzo, J.J.5
Parisi, G.6
-
12
-
-
4243905492
-
-
M. Henkel, S. Andrieu, Ph. Bauer, and M. Piecuch, Phys. Rev. Lett. 80, 4783 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 4783
-
-
Henkel, M.1
Andrieu, S.2
Bauer, Ph.3
Piecuch, M.4
-
13
-
-
85036399661
-
-
The advantage of the off-equilibrium measurements is that, as long as (Formula presented) [where (Formula presented) is the off-equilibrium correlation length], the system size can be considered infinite for all the practical purposes
-
The advantage of the off-equilibrium measurements is that, as long as (Formula presented) [where (Formula presented) is the off-equilibrium correlation length], the system size can be considered infinite for all the practical purposes.
-
-
-
-
14
-
-
5744249209
-
-
N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. J. Teller, J. Chem. Phys. 21, 1087 (1953).
-
(1953)
J. Chem. Phys.
, vol.21
, pp. 1087
-
-
Metropolis, N.1
Rosenbluth, A.W.2
Rosenbluth, M.N.3
Teller, A.H.4
Teller, E.J.5
-
15
-
-
0003038341
-
-
R. Folk, Yu. Holovatch, and T. Yavors’kii, Zh. Eksp. Teor. Fiz. 69, 698 (1999) [JETP Lett. 69, 747 (1999)].
-
(1999)
JETP Lett.
, vol.69
, pp. 747
-
-
Folk, R.1
Holovatch, Yu.2
Yavors’kii, T.3
-
18
-
-
84953269529
-
-
J. Cardy, Scaling and Renormalization in Statistical Physics, Cambridge Lecture Notes in Physics Vol. 5 (Cambridge University Press, Cambridge, 1996)
-
J. Cardy, Scaling and Renormalization in Statistical Physics, Cambridge Lecture Notes in Physics Vol. 5 (Cambridge University Press, Cambridge, 1996).
-
-
-
-
19
-
-
85036358059
-
-
See Ref. 18, p. 152. In particular, Cardy shows that to order (Formula presented) the eigenvalue associated with the magnetic field (Formula presented) remains unchanged if dilution is added to the system. Remember that (Formula presented) where d is the dimensionality of the space
-
See Ref. 18, p. 152. In particular, Cardy shows that to order (Formula presented) the eigenvalue associated with the magnetic field (Formula presented) remains unchanged if dilution is added to the system. Remember that (Formula presented) where d is the dimensionality of the space.
-
-
-
-
20
-
-
85036406570
-
-
CERNLIB. CERN program library (CERN, Geneva, Switzerland, 1996)
-
CERNLIB. CERN program library (CERN, Geneva, Switzerland, 1996).
-
-
-
-
21
-
-
0001112899
-
-
The summability of the perturbative expansions in diluted system is a complex issue. At least, in zero dimensions it is possible to show that the perturbative series of the free energy lacks Borel summability. See, for example, A. J. Bray, T. McCarthy, M. A. Moore, J. D. Reger, and A. P. Young, Phys. Rev. B 36, 2212 (1987)
-
(1987)
Phys. Rev. B
, vol.36
, pp. 2212
-
-
Bray, A.J.1
McCarthy, T.2
Moore, M.A.3
Reger, J.D.4
Young, A.P.5
-
22
-
-
0001147433
-
-
This could explain the bad convergence of the (Formula presented) expansion in diluted systems. See, for (Formula presented) also 15 and 22
-
Phys. Rev. BA. J. McKane, 49, 12 003 (1994).This could explain the bad convergence of the (Formula presented) expansion in diluted systems. See, for (Formula presented) also 15 and 22.
-
(1994)
Phys. Rev. B
, vol.49
, pp. 12-003
-
-
McKane, A.J.1
|