-
1
-
-
84965041286
-
-
(University Science, Mill Valley, Calif
-
A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
-
(1986)
Lasers
-
-
Siegman, A.E.1
-
2
-
-
0021425154
-
Coherence theory of laser resonator modes
-
E. Wolf and G. S. Agarwal, “Coherence theory of laser resonator modes,” J. Opt. Soc. Am. A 1, 541-546 (1984).
-
(1984)
J. Opt. Soc. Am. A
, vol.1
, pp. 541-546
-
-
Wolf, E.1
Agarwal, G.S.2
-
3
-
-
84975562742
-
Coherence theoretic algorithm to determine the transverse-mode structure of lasers
-
J. Turunen, E. Tervonen, and A. T. Friberg, “Coherence theoretic algorithm to determine the transverse-mode structure of lasers,” Opt. Lett. 14, 627-629 (1989).
-
(1989)
Opt. Lett.
, vol.14
, pp. 627-629
-
-
Turunen, J.1
Tervonen, E.2
Friberg, A.T.3
-
4
-
-
0024770349
-
Transverse lasermode structure determination from spatial coherence measurements: Experimental results
-
E. Tervonen, J. Turunen, and A. T. Friberg, “Transverse lasermode structure determination from spatial coherence measurements: experimental results,” Appl. Phys. B 49, 409-414 (1989).
-
(1989)
Appl. Phys. B
, vol.49
, pp. 409-414
-
-
Tervonen, E.1
Turunen, J.2
Friberg, A.T.3
-
5
-
-
0027640978
-
A simple method for estimating the number of effectively oscillating modes and weighting factors of mixed-mode laser beams behaving like Gaussian-Schell model beams
-
B. Lu, B. Zhang, B. Cai, and C. Yang, “A simple method for estimating the number of effectively oscillating modes and weighting factors of mixed-mode laser beams behaving like Gaussian-Schell model beams,” Opt. Commun. 101, 49-52 (1993).
-
(1993)
Opt. Commun.
, vol.101
, pp. 49-52
-
-
Lu, B.1
Zhang, B.2
Cai, B.3
Yang, C.4
-
6
-
-
0027579527
-
Output beam propagation and beam quality from a multimode stable-cavity laser
-
A. E. Siegman and S. W. Townsend, “Output beam propagation and beam quality from a multimode stable-cavity laser,” IEEE J. Quantum Electron. 29, 1212-1217 (1993).
-
(1993)
IEEE J. Quantum Electron.
, vol.29
, pp. 1212-1217
-
-
Siegman, A.E.1
Townsend, S.W.2
-
7
-
-
0001398726
-
Transverse-mode analysis of a laser beam by near- and far-field intensity measurements
-
A. Cutolo, T. Isernia, I. Izzo, R. Pierri, and L. Zeni, “Transverse-mode analysis of a laser beam by near- and far-field intensity measurements,” Appl. Opt. 34, 7974-7978 (1995).
-
(1995)
Appl. Opt.
, vol.34
, pp. 7974-7978
-
-
Cutolo, A.1
Isernia, T.2
Izzo, I.3
Pierri, R.4
Zeni, L.5
-
8
-
-
0001166329
-
Modal decomposition of partially coherent flat-topped beams produced by multimode lasers
-
R. Borghi and M. Santarsiero, “Modal decomposition of partially coherent flat-topped beams produced by multimode lasers,” Opt. Lett. 23, 313-315 (1998).
-
(1998)
Opt. Lett.
, vol.23
, pp. 313-315
-
-
Borghi, R.1
Santarsiero, M.2
-
9
-
-
0027575105
-
Coherence and space distribution of intensity
-
F. Gori, M. Santarsiero, and G. Guattari, “Coherence and space distribution of intensity,” J. Opt. Soc. Am. A 10, 673-679 (1993).
-
(1993)
J. Opt. Soc. Am. A
, vol.10
, pp. 673-679
-
-
Gori, F.1
Santarsiero, M.2
Guattari, G.3
-
10
-
-
12044254133
-
Complex wave-field reconstruction using phase-space tomography
-
M. G. Raymer, M. Beck, and D. F. McAlister, “Complex wave-field reconstruction using phase-space tomography,” Phys. Rev. Lett. 72, 1137-1140 (1994).
-
(1994)
Phys. Rev. Lett.
, vol.72
, pp. 1137-1140
-
-
Raymer, M.G.1
Beck, M.2
Mc Alister, D.F.3
-
11
-
-
84975661885
-
Partially coherent fields, the transport-of-intensity equation, and phase uniqueness
-
T. E. Gureyev, A. Roberts, and K. A. Nugent, “Partially coherent fields, the transport-of-intensity equation, and phase uniqueness,” J. Opt. Soc. Am. A 12, 1942-1946 (1995).
-
(1995)
J. Opt. Soc. Am. A
, vol.12
, pp. 1942-1946
-
-
Gureyev, T.E.1
Roberts, A.2
Nugent, K.A.3
-
12
-
-
0042450271
-
Complex wave-field reconstruction by means of the Page distribution function
-
R. Gase, T. Gase, and K. Bluthner, “Complex wave-field reconstruction by means of the Page distribution function,” Opt. Lett. 20, 2045-2047 (1995).
-
(1995)
Opt. Lett.
, vol.20
, pp. 2045-2047
-
-
Gase, R.1
Gase, T.2
Bluthner, K.3
-
13
-
-
0001194673
-
Direct measurement of the two-point field correlation function
-
G. Iaconis and I. A. Walmsley, “Direct measurement of the two-point field correlation function,” Opt. Lett. 21, 1783-1785 (1996).
-
(1996)
Opt. Lett.
, vol.21
, pp. 1783-1785
-
-
Iaconis, G.1
Walmsley, I.A.2
-
14
-
-
0001603729
-
Analytic relation for recovering the mutual intensity by means of intensity information
-
J. Tu and S. Tamura, “Analytic relation for recovering the mutual intensity by means of intensity information,” J. Opt. Soc. Am. A 15, 202-206 (1998).
-
(1998)
J. Opt. Soc. Am. A
, vol.15
, pp. 202-206
-
-
Tu, J.1
Tamura, S.2
-
15
-
-
0042951240
-
Shape-invariant propagation of the cross-spectral density
-
L. Mandel and E. Wolf, eds. (Plenum, New York
-
F. Gori, “Shape-invariant propagation of the cross-spectral density,” in Coherence and Quantum Optics, L. Mandel and E. Wolf, eds. (Plenum, New York, 1984), p. 363.
-
(1984)
Coherence and Quantum Optics
, pp. 363
-
-
Gori, F.1
-
16
-
-
0001713619
-
Intensity-based modal analysis for partially coherent beams with Hermite-Gaussian modes
-
F. Gori, M. Santarsiero, R. Borghi, and G. Guattari, “Intensity-based modal analysis for partially coherent beams with Hermite-Gaussian modes,” Opt. Lett. 23, 989-991 (1998).
-
(1998)
Opt. Lett.
, vol.23
, pp. 989-991
-
-
Gori, F.1
Santarsiero, M.2
Borghi, R.3
Guattari, G.4
-
19
-
-
0017934792
-
Is complete coherence necessary for the generation of highly directional light beams?
-
E. Collett and E. Wolf, “Is complete coherence necessary for the generation of highly directional light beams?” Opt. Lett. 2, 27-29 (1978).
-
(1978)
Opt. Lett.
, vol.2
, pp. 27-29
-
-
Collett, E.1
Wolf, E.2
-
20
-
-
0019027338
-
Connection between spatial coherence and modal structure in optical fibers and semiconductors lasers
-
P. Spano, “Connection between spatial coherence and modal structure in optical fibers and semiconductors lasers,” Opt. Commun. 33, 265-270 (1980).
-
(1980)
Opt. Commun.
, vol.33
, pp. 265-270
-
-
Spano, P.1
-
21
-
-
0037629886
-
Direct measurements of the spatial mode of a laser pulse: Theory
-
E. G. Johnson, Jr., “Direct measurements of the spatial mode of a laser pulse: theory,” Appl. Opt. 25, 2967-2975 (1986).
-
(1986)
Appl. Opt
, vol.25
, pp. 2967-2975
-
-
Johnson, E.G.1
-
22
-
-
0028460223
-
Interpretation and experimental demonstration of twisted Gaussian Schell-model beams
-
A. T. Friberg, E. Tervonen, and J. Turunen, “Interpretation and experimental demonstration of twisted Gaussian Schell-model beams,” J. Opt. Soc. Am. A 11, 1818-1826 (1994).
-
(1994)
J. Opt. Soc. Am. A
, vol.11
, pp. 1818-1826
-
-
Friberg, A.T.1
Tervonen, E.2
Turunen, J.3
-
24
-
-
0019064888
-
Collett-Wolf sources and multimode lasers
-
F. Gori, “Collett-Wolf sources and multimode lasers,” Opt. Commun. 34, 301-305 (1980).
-
(1980)
Opt. Commun.
, vol.34
, pp. 301-305
-
-
Gori, F.1
-
25
-
-
0020154921
-
Coherent-mode representation of Gaussian Schell-model sources and of their radiation fields
-
A. Starikov and E. Wolf, “Coherent-mode representation of Gaussian Schell-model sources and of their radiation fields,” J. Opt. Soc. Am. A 72, 923-928 (1982).
-
(1982)
J. Opt. Soc. Am. A
, vol.72
, pp. 923-928
-
-
Starikov, A.1
Wolf, E.2
-
26
-
-
0024032010
-
Solid-state laser unstable resonators with tapered reflectivity mirrors: The super-Gaussian approach
-
S. De Silvestri, P. Laporta, V. Magni, and O. Svelto, “Solid-state laser unstable resonators with tapered reflectivity mirrors: The super-Gaussian approach,” IEEE J. Quantum Electron. 24, 1172-1177 (1988).
-
(1988)
IEEE J. Quantum Electron.
, vol.24
, pp. 1172-1177
-
-
De Silvestri, S.1
Laporta, P.2
Magni, V.3
Svelto, O.4
-
27
-
-
0028433946
-
Flattened Gaussian beams
-
F. Gori, “Flattened Gaussian beams,” Opt. Commun. 107, 335-341 (1994).
-
(1994)
Opt. Commun.
, vol.107
, pp. 335-341
-
-
Gori, F.1
-
29
-
-
0030193605
-
Propagation of axially symmetric flattened Gaussian beams
-
V. Bagini, R. Borghi, F. Gori, A. M. Pacileo, M. Santarsiero, D. Ambrosini, and G. Schirripa Spagnolo, “Propagation of axially symmetric flattened Gaussian beams,” J. Opt. Soc. Am. A 13, 1385-1394 (1996).
-
(1996)
J. Opt. Soc. Am. A
, vol.13
, pp. 1385-1394
-
-
Bagini, V.1
Borghi, R.2
Gori, F.3
Pacileo, A.M.4
Santarsiero, M.5
Ambrosini, D.6
Schirripa Spagnolo, G.7
-
30
-
-
0001611610
-
Focusing of axially symmetric flattened Gaussian beams
-
M. Santarsiero, D. Aiello, R. Borghi, and S. Vicalvi, “Focusing of axially symmetric flattened Gaussian beams,” J. Mod. Opt. 44, 633-650 (1997).
-
(1997)
J. Mod. Opt.
, vol.44
, pp. 633-650
-
-
Santarsiero, M.1
Aiello, D.2
Borghi, R.3
Vicalvi, S.4
-
31
-
-
0032163841
-
Focal shift of focused flat-topped beams
-
R. Borghi, M. Santarsiero, and S. Vicalvi, “Focal shift of focused flat-topped beams,” Opt. Commun. 154, 243-248 (1998).
-
(1998)
Opt. Commun.
, vol.154
, pp. 243-248
-
-
Borghi, R.1
Santarsiero, M.2
Vicalvi, S.3
-
33
-
-
0032662209
-
Modal structure analysis for a class of axially symmetric flat-topped laser beams
-
R. Borghi and M. Santarsiero, “Modal structure analysis for a class of axially symmetric flat-topped laser beams,” IEEE J. Quantum Electron. 35, 745-750 (1999).
-
(1999)
IEEE J. Quantum Electron.
, vol.35
, pp. 745-750
-
-
Borghi, R.1
Santarsiero, M.2
-
35
-
-
0001300672
-
-
Gordon, New York
-
A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series (Gordon, New York, 1986), Vol. 1.
-
(1986)
Integrals and Series
, vol.1
-
-
Prudnikov, A.P.1
Brychkov, Y.A.2
Marichev, O.I.3
-
36
-
-
0001300672
-
-
Gordon, New York
-
A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series (Gordon, New York, 1986), Vol. 2.
-
(1986)
Integrals and Series
, vol.2
-
-
Prudnikov, A.P.1
Brychkov, Y.A.2
Marichev, O.I.3
|