메뉴 건너뛰기




Volumn 39, Issue 4, 1999, Pages 683-700

A Dimensional Splitting Method for Quasilinear Hyperbolic Equations with Variable Coefficients

Author keywords

Dimensional splitting; Front tracking; Quasilinear hyperbolic equations; Variable coefficients

Indexed keywords


EID: 0000397010     PISSN: 00063835     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1022339223716     Document Type: Article
Times cited : (10)

References (15)
  • 1
    • 0003024878 scopus 로고
    • The method of fractional steps for conservation laws
    • M. G. Crandall and A. Majda, The method of fractional steps for conservation laws, Numer. Math., 34 (1980), pp. 285-314.
    • (1980) Numer. Math. , vol.34 , pp. 285-314
    • Crandall, M.G.1    Majda, A.2
  • 2
    • 84966217981 scopus 로고
    • Monotone difference approximations for scalar conservation laws
    • M. G. Crandall and A. Majda, Monotone difference approximations for scalar conservation laws, Math. Comp., 34 (1980), pp. 1-21.
    • (1980) Math. Comp. , vol.34 , pp. 1-21
    • Crandall, M.G.1    Majda, A.2
  • 4
    • 0023859716 scopus 로고
    • A numerical method for first order nonlinear scalar conservation laws in one-dimension
    • H. Holden, L. Holden, and R. Høegh-Krohn, A numerical method for first order nonlinear scalar conservation laws in one-dimension, Comput. Math. Applic., 15 (1988), pp. 595-602.
    • (1988) Comput. Math. Applic. , vol.15 , pp. 595-602
    • Holden, H.1    Holden, L.2    Høegh-Krohn, R.3
  • 6
    • 0041935750 scopus 로고    scopus 로고
    • An unconditionally stable method for the Euler equations
    • H. Holden, K.-A. Lie, and N. H. Risebro, An unconditionally stable method for the Euler equations, J. Comp. Phys., 150 (1999), pp. 76-96.
    • (1999) J. Comp. Phys. , vol.150 , pp. 76-96
    • Holden, H.1    Lie, K.-A.2    Risebro, N.H.3
  • 7
    • 84968505714 scopus 로고
    • A method of fractional steps for scalar conservation laws without the CFL condition
    • H. Holden and N. H. Risebro, A method of fractional steps for scalar conservation laws without the CFL condition, Math. Comp., 60 (1993), pp. 221-232.
    • (1993) Math. Comp. , vol.60 , pp. 221-232
    • Holden, H.1    Risebro, N.H.2
  • 8
    • 0032206542 scopus 로고    scopus 로고
    • Nonoscillatory central schemes for multidimensional hyperbolic conservation laws
    • G.-S. Jiang and E. Tadmor, Nonoscillatory central schemes for multidimensional hyperbolic conservation laws, SIAM J. Sci. Comput., 19 (1998), pp. 1892-1917.
    • (1998) SIAM J. Sci. Comput. , vol.19 , pp. 1892-1917
    • Jiang, G.-S.1    Tadmor, E.2
  • 9
    • 0031997184 scopus 로고    scopus 로고
    • A front-tracking approach to a two-phase fluid-flow model with capillary forces
    • K. H. Karlsen, K.-A. Lie, N. H. Risebro, and J. Frøyen, A front-tracking approach to a two-phase fluid-flow model with capillary forces, In Situ, 22 (1998), pp. 59-89.
    • (1998) In Situ , vol.22 , pp. 59-89
    • Karlsen, K.H.1    Lie, K.-A.2    Risebro, N.H.3    Frøyen, J.4
  • 10
    • 84956238079 scopus 로고
    • First order quasi-linear equations in several independent variables
    • S. N. Kružkov, First order quasi-linear equations in several independent variables, Math. USSR Sbornik, 10 (1970), pp. 217-243.
    • (1970) Math. USSR Sbornik , vol.10 , pp. 217-243
    • Kružkov, S.N.1
  • 11
    • 0000314925 scopus 로고    scopus 로고
    • High-resolution conservative algorithms for advection in incompressible flow
    • R. J. LeVeque, High-resolution conservative algorithms for advection in incompressible flow, SIAM J. Numer. Anal., 33 (1996), pp. 627-665.
    • (1996) SIAM J. Numer. Anal. , vol.33 , pp. 627-665
    • LeVeque, R.J.1
  • 15
    • 0018504139 scopus 로고
    • A nine point finite difference simulator for realistic predictions of adverse mobility ratio displacements
    • J. L. Yanosik and T. A. McCracken, A nine point finite difference simulator for realistic predictions of adverse mobility ratio displacements, SPE Journal, (1979), pp. 252-262.
    • (1979) SPE Journal , pp. 252-262
    • Yanosik, J.L.1    McCracken, T.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.