-
7
-
-
0346363378
-
-
Phys. Rev. Lett.M. Grayson, D C. Tsui, L N. Pfeiffer, K W. West, and A M. Chang, 80, 1062 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 1062
-
-
Grayson, M.1
Tsui, D.C.2
Pfeiffer, L.N.3
West, K.W.4
Chang, A.M.5
-
8
-
-
0000284726
-
-
S. L. Sondhi, A. Karlhede, S A. Kivelson, and E H. Rezayi, Phys. Rev. B47, 16 419 (1993).
-
(1993)
Phys. Rev. B
, vol.47
, pp. 16 419
-
-
Sondhi, S.L.1
Karlhede, A.2
Kivelson, S.A.3
Rezayi, E.H.4
-
9
-
-
4243363137
-
-
A. Karlhede, S A. Kivelson, K. Lejnell, and S L. Sondhi, Phys. Rev. Lett.77, 2061 (1996).
-
(1996)
Phys. Rev. Lett.
, vol.77
, pp. 2061
-
-
Karlhede, A.1
Kivelson, S.A.2
Lejnell, K.3
Sondhi, S.L.4
-
11
-
-
85037923178
-
-
(unpublished)
-
S. L. Sondhi (unpublished);
-
-
-
Sondhi, S.L.1
-
14
-
-
0001595211
-
-
J. H. Oaknin, B. Paredes, L. Martín-Moreno, and C. Tejedor, Phys. Rev. B57, 6618 (1998).
-
(1998)
Phys. Rev. B
, vol.57
, pp. 6618
-
-
Oaknin, J.H.1
Paredes, B.2
Martín-Moreno, L.3
Tejedor, C.4
-
17
-
-
0001028837
-
-
S. M. Reimann, M. Koskinen, M. Manninen, and B R. Mottelson, Phys. Rev. Lett.83, 3270 (1999).
-
(1999)
Phys. Rev. Lett.
, vol.83
, pp. 3270
-
-
Reimann, S.M.1
Koskinen, M.2
Manninen, M.3
Mottelson, B.R.4
-
19
-
-
0000752068
-
-
Pis’ma Zh. Éksp. Teor. Fiz., 152, (1981)
-
Yu.A. Bychkov, S V. Iordanskii, and G M. Éliashberg, Pis’ma Zh. Éksp. Teor. Fiz. 33, 152, (1981) [JETP Lett.33, 143 (1981)].
-
(1981)
JETP Lett.
, vol.33
, pp. 143
-
-
Bychkov, Y.A.1
Iordanskii, S.V.2
Éliashberg, G.M.3
-
21
-
-
85037903724
-
-
The background dielectric constant of the host semiconductor can be included by replacing (formula presented) by (formula presented) in this and other expressions in this paper
-
The background dielectric constant of the host semiconductor can be included by replacing (formula presented) by (formula presented) in this and other expressions in this paper.
-
-
-
-
25
-
-
85037891814
-
-
As we are discussing wave functions defined on the set of momenta, strictly speaking, the localization “length” has units of a momentum. However, it is clear from the structure of the lowest Landau level wave functions, that this is the same as a physical length upon multiplication by the square of the magnetic length. This is invisible in our notation, where (formula presented) and hence, we shall not make the distinction in what follows
-
As we are discussing wave functions defined on the set of momenta, strictly speaking, the localization “length” has units of a momentum. However, it is clear from the structure of the lowest Landau level wave functions, that this is the same as a physical length upon multiplication by the square of the magnetic length. This is invisible in our notation, where (formula presented) and hence, we shall not make the distinction in what follows.
-
-
-
-
28
-
-
85037892388
-
-
We are grateful to C. Tejedor for explaining the prescription, which is implicit in Ref. 9, to us
-
We are grateful to C. Tejedor for explaining the prescription, which is implicit in Ref. 9, to us.
-
-
-
-
30
-
-
0001616731
-
-
This has been discussed in detail for the disk by, and
-
This has been discussed in detail for the disk by M. Stone, H W. Wyld, and R L. Schult, Phys. Rev. B45, 14 156 (1992).
-
(1992)
Phys. Rev. B
, vol.45
, pp. 14 156
-
-
Stone, M.1
Wyld, H.W.2
Schult, R.L.3
|