-
1
-
-
0001563645
-
Saddle points and Multiple Solutions of differential equations
-
Amann H. Saddle points and Multiple Solutions of differential equations. Math. Z. 168:1979;127-166.
-
(1979)
Math. Z.
, vol.168
, pp. 127-166
-
-
Amann, H.1
-
2
-
-
84966206938
-
A note on degree theory for gradient mappings
-
Amann H. A note on degree theory for gradient mappings. Proc. Amer. Math. Soc. 85:1982;591-595.
-
(1982)
Proc. Amer. Math. Soc.
, vol.85
, pp. 591-595
-
-
Amann, H.1
-
3
-
-
34250466905
-
On the inversion of some differentiable mappings with singularities between Banach spaces
-
Ambrosetti A., Prodi G. On the inversion of some differentiable mappings with singularities between Banach spaces. Ann. Mat. Pura Appl. (4). 93:1972;231-246.
-
(1972)
Ann. Mat. Pura Appl. (4)
, vol.93
, pp. 231-246
-
-
Ambrosetti, A.1
Prodi, G.2
-
4
-
-
0039684666
-
On the number of stable local minima of some functionals
-
Benkert F. On the number of stable local minima of some functionals. Z. Anal. Anwendungen. 8:1989;89-96.
-
(1989)
Z. Anal. Anwendungen
, vol.8
, pp. 89-96
-
-
Benkert, F.1
-
6
-
-
33846814955
-
Singular perturbations of variational problems arising from a two-phase transition model
-
Bouchitté G. Singular perturbations of variational problems arising from a two-phase transition model. Appl. Math. and Optimization. 21:1990;289-314.
-
(1990)
Appl. Math. and Optimization
, vol.21
, pp. 289-314
-
-
Bouchitté, G.1
-
7
-
-
34250131162
-
An analysis of a phase-field model of a free boundary
-
Caginalp G. An analysis of a phase-field model of a free boundary. Arch. Rational Mech. Anal. 92:1986;205-245.
-
(1986)
Arch. Rational Mech. Anal.
, vol.92
, pp. 205-245
-
-
Caginalp, G.1
-
10
-
-
0001314662
-
Breaking of symmetries for forced equations
-
Dancer E. N. Breaking of symmetries for forced equations. Math. Annalen. 262:1983;473-486.
-
(1983)
Math. Annalen
, vol.262
, pp. 473-486
-
-
Dancer, E.N.1
-
12
-
-
84972548291
-
Some remarks on the stability of sign changing solutions
-
Dancer E. N., Guo Z. Some remarks on the stability of sign changing solutions. Tohoku Math. J. (2). 47:1995;199-225.
-
(1995)
Tohoku Math. J. (2)
, vol.47
, pp. 199-225
-
-
Dancer, E.N.1
Guo, Z.2
-
15
-
-
0000694081
-
On the structure of equilibrium phase transitions within the gradient theory of fluids
-
Gurtin M., Matano H. On the structure of equilibrium phase transitions within the gradient theory of fluids. Quaterly of Appl. Math. (2). 46:1988;301-317.
-
(1988)
Quaterly of Appl. Math. (2)
, vol.46
, pp. 301-317
-
-
Gurtin, M.1
Matano, H.2
-
17
-
-
2442455403
-
The Stefan problem with Gibbs Thomson law
-
2.75
-
Luckhaus S. The Stefan problem with Gibbs Thomson law. Sezione Anal. Mat. Probab. 2.75 (591):1991.
-
(1991)
Sezione Anal. Mat. Probab.
, Issue.591
-
-
Luckhaus, S.1
-
18
-
-
33845220501
-
The Gibbs Thompson relation within the gradient theory of phase transitions
-
Luckhaus S., Modica L. The Gibbs Thompson relation within the gradient theory of phase transitions. Arch. Rational Mech. Anal. 107:1989;71-83.
-
(1989)
Arch. Rational Mech. Anal.
, vol.107
, pp. 71-83
-
-
Luckhaus, S.1
Modica, L.2
-
19
-
-
34250109116
-
The gradient theory of phase transitions and the minimal interface criterion
-
Modica L. The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. and Anal. 98:1987;123-142.
-
(1987)
Arch. Rational Mech. and Anal.
, vol.98
, pp. 123-142
-
-
Modica, L.1
-
20
-
-
0001387066
-
Nonconvex variational problems with anisotropic perturbations
-
Owen N. C., Sternberg P. Nonconvex variational problems with anisotropic perturbations. Nonlinear Anal. 16:1991;705-719.
-
(1991)
Nonlinear Anal.
, vol.16
, pp. 705-719
-
-
Owen, N.C.1
Sternberg, P.2
-
21
-
-
0000817633
-
Stefan problem with surface tension as a limit of the phase field model
-
Plotnikov P. I., Starovoitov V. N. Stefan problem with surface tension as a limit of the phase field model. Differential Equations. 29:1993;395-404.
-
(1993)
Differential Equations
, vol.29
, pp. 395-404
-
-
Plotnikov, P.I.1
Starovoitov, V.N.2
-
22
-
-
4544350714
-
A note on topological degree for potential operators
-
Rabinowitz P. H. A note on topological degree for potential operators. J. Math. Anal. Appl. 51:1975;483-492.
-
(1975)
J. Math. Anal. Appl.
, vol.51
, pp. 483-492
-
-
Rabinowitz, P.H.1
-
23
-
-
0000381183
-
Generic properties of nonlinear boundary value problems
-
Saut J. C., Temam R. Generic properties of nonlinear boundary value problems. Comm. Partial Differential Equations. 4:1979;293-319.
-
(1979)
Comm. Partial Differential Equations
, vol.4
, pp. 293-319
-
-
Saut, J.C.1
Temam, R.2
-
24
-
-
24544463645
-
The quasi-stationary phase field equations with Neumann boundary conditions
-
Schätzle R. The quasi-stationary phase field equations with Neumann boundary conditions. Trans. Amer. Math. Soc. 1996.
-
(1996)
Trans. Amer. Math. Soc.
-
-
Schätzle, R.1
-
25
-
-
0002520799
-
A counterexample for an approximation of the Gibbs-Thomson law
-
Schätzle R. A counterexample for an approximation of the Gibbs-Thomson law. Adv. Math. Sci. Appl. 7:1997;25-36.
-
(1997)
Adv. Math. Sci. Appl.
, vol.7
, pp. 25-36
-
-
Schätzle, R.1
-
26
-
-
24544460962
-
An example where the Allen-Cahn equation does not approximate mean curvature flow
-
Schätzle R. An example where the Allen-Cahn equation does not approximate mean curvature flow. Proc. Royal Soc. London. 1997.
-
(1997)
Proc. Royal Soc. London
-
-
Schätzle, R.1
-
27
-
-
34250095380
-
The effect of a singular perturbation on nonconvex variational problems
-
Sternberg P. The effect of a singular perturbation on nonconvex variational problems. Arch. Rational Mech. Anal. 101:1988;209-260.
-
(1988)
Arch. Rational Mech. Anal.
, vol.101
, pp. 209-260
-
-
Sternberg, P.1
-
28
-
-
0000482727
-
Vector-valued local minimizers of nonconvex variational problems
-
Sternberg P. Vector-valued local minimizers of nonconvex variational problems. Rocky Mountain J. Math. 21:1991;799-807.
-
(1991)
Rocky Mountain J. Math.
, vol.21
, pp. 799-807
-
-
Sternberg, P.1
-
29
-
-
0039092399
-
The Stefan problem coupled with the Gibbs-Thompson law as singular limit of the phase-field equations in the radial case
-
Stoth B. The Stefan problem coupled with the Gibbs-Thompson law as singular limit of the phase-field equations in the radial case. European J. Appl. Math. 1996.
-
(1996)
European J. Appl. Math.
-
-
Stoth, B.1
|