메뉴 건너뛰기




Volumn 6, Issue 5, 2000, Pages 485-511

Long-time properties of solutions of simplest nonlinear q-difference equations

Author keywords

Difference and q difference equations; One dimensional maps; Upper semicontinuous functions

Indexed keywords


EID: 0000385117     PISSN: 10236198     EISSN: 15635120     Source Type: Journal    
DOI: 10.1080/10236190008808243     Document Type: Article
Times cited : (5)

References (15)
  • 2
    • 0009194420 scopus 로고    scopus 로고
    • From one-dimensional to infinite-dimensional dynamical systems: Ideal turbulence
    • (in Ukrainian); Ukrain. Math. J. 48(12) (1996), 1817-1842
    • E.Yu. Romanenko and A.N. Sharkovsky. From one-dimensional to infinite-dimensional dynamical systems: Ideal turbulence, Ukrain. Mat. Zhum. 48(12) (1996), 1604-1627 (in Ukrainian); Ukrain. Math. J. 48(12) (1996), 1817-1842.
    • (1996) Ukrain. Mat. Zhum , vol.48 , Issue.12 , pp. 1604-1627
    • Romanenko, E.Y.1    Sharkovsky, A.N.2
  • 3
    • 0032202711 scopus 로고    scopus 로고
    • On attractors of continuous difference equations
    • E. Romanenko. On attractors of continuous difference equations, Computers and Mathematics with Applications 36(10-12) (1998), 377-390.
    • (1998) Computers and Mathematics With Applications , vol.36 , Issue.10-12 , pp. 377-390
    • Romanenko, E.1
  • 4
    • 0001121830 scopus 로고
    • Oscillations in singularly perturbed delay equations
    • (New Series), Springer-Verlag
    • A.F. Ivanov and A.N. Sharkovsky. Oscillations in singularly perturbed delay equations, Dynamics Reported, Vol. 1 (New Series), Springer-Verlag, 1991, pp. 165-224.
    • (1991) Dynamics Reported , vol.1 , pp. 165-224
    • Ivanov, A.F.1    Sharkovsky, A.N.2
  • 6
    • 0002542043 scopus 로고
    • Ideal turbulence: Attractors of deterministic systems may lie in the space of random fields
    • A.N. Sharkovsky and E. Yu. Romanenko. Ideal turbulence: Attractors of deterministic systems may lie in the space of random fields. Int. J. Bifurcation Chaos 2(1) (1992), 31-36.
    • (1992) Int. J. Bifurcation Chaos , vol.2 , Issue.1 , pp. 31-36
    • Sharkovsky, A.N.1    Romanenko, E.Y.2
  • 7
    • 21344488015 scopus 로고
    • Ideal turbulence in an idealized time-delayed Chua's circuit
    • A.N. Sharkovsky. Ideal turbulence in an idealized time-delayed Chua's circuit, Int. J. Bifurcation Chaos 4(2) (1994), 303-309.
    • (1994) Int. J. Bifurcation Chaos , vol.4 , Issue.2 , pp. 303-309
    • Sharkovsky, A.N.1
  • 8
    • 0009114034 scopus 로고
    • Universal phenomena in solution bifurcations of some boundary value problems
    • A.N. Sharkovsky and A.G. Sivak. Universal phenomena in solution bifurcations of some boundary value problems, Nonlinear Math. Physics 1(2) (1994), 147-157.
    • (1994) Nonlinear Math. Physics , vol.1 , Issue.2 , pp. 147-157
    • Sharkovsky, A.N.1    Sivak, A.G.2
  • 9
    • 33744816987 scopus 로고
    • Self-structuring and self-similarity in boundary value problems
    • Thirty Years after Sharkovskii's Theorem: New Perspectives (Proc. Conf), World Scientific, 1995, pp. 145-156
    • E.Yu. Romanenko, A.N. Sharkovsky and M.B. Vereikina. Self-structuring and self-similarity in boundary value problems, Int. J. Bifurcation Chaos 5(5) (1995), 1407-1418; Thirty Years after Sharkovskii's Theorem: New Perspectives (Proc. Conf), World Scientific, 1995, pp. 145-156.
    • (1995) Int. J. Bifurcation Chaos , vol.5 , Issue.5 , pp. 1407-1418
    • Romanenko, E.Y.1    Sharkovsky, A.N.2    Vereikina, M.B.3
  • 10
    • 21844512666 scopus 로고
    • Universal phenomena in some infinite-dimensional dynamical systems
    • rorId Scientific, 1995, pp. 157-164
    • rorId Scientific, 1995, pp. 157-164.
    • (1995) Int. J. Bifurcation Chaos , vol.5 , Issue.5 , pp. 1419-1425
    • Sharkovsky, A.N.1
  • 11
    • 0009269805 scopus 로고    scopus 로고
    • Self-stochasticity in deterministic boundary value problems
    • Inst. Appl. Math. Mech., NAS of Ukraine, Donetsk
    • E.Yu. Romanenko, A.N. Sharkovsky and M.B. Vereikina. Self-stochasticity in deterministic boundary value problems, Nonlinear Partial Differential Equations 9 (1999), Inst. Appl. Math. Mech., NAS of Ukraine, Donetsk, 174-184.
    • (1999) Nonlinear Partial Differential Equations , vol.9 , pp. 174-184
    • Romanenko, E.Y.1    Sharkovsky, A.N.2    Vereikina, M.B.3
  • 12
    • 85045796248 scopus 로고    scopus 로고
    • Dynamics of solutions for simplest nonlinear boundary value problems
    • (in Ukrainian)
    • E.Yu. Romanenko and A.N. Sharkovsky Dynamics of solutions for simplest nonlinear boundary value problems, Ukrain. Math. J. 51(6) (1999), 810-826 (in Ukrainian).
    • (1999) Ukrain. Math. J , vol.51 , Issue.6 , pp. 810-826
    • Romanenko, E.Y.1    Sharkovsky, A.N.2
  • 13
    • 0033163945 scopus 로고    scopus 로고
    • From boundary value problems to difference equations: A method of investigation of chaotic vibrations
    • E.Yu. Romanenko and A.N. Sharkovsky. From boundary value problems to difference equations: A method of investigation of chaotic vibrations, Int. J. Bifurcation Chaos 9(7) (1999), 1285-1306.
    • (1999) Int. J. Bifurcation Chaos , vol.9 , Issue.7 , pp. 1285-1306
    • Romanenko, E.Y.1    Sharkovsky, A.N.2
  • 14
    • 0003391813 scopus 로고
    • Academic Press, New York
    • K. Kuratowski. Topology, Vol. 1, Academic Press, New York, 1966.
    • (1966) Topology , vol.1
    • Kuratowski, K.1
  • 15
    • 0002072428 scopus 로고
    • Coexistence of cycles of a continuous transformation of the straight line into itself
    • in Russian, Int. J. Bifurcation Chaos 5(5) (1995), 1263-1273; Thirty years after Sharkovskii's Theorem: New Perspectives (Proc. Conf.), World Scientific, 1995, pp. 1-11
    • A.N Sharkovsky. Coexistence of cycles of a continuous transformation of the straight line into itself, Ukrain. Mat. Zhum. 16(1) (1964), 61-70 (in Russian); Int. J. Bifurcation Chaos 5(5) (1995), 1263-1273; Thirty years after Sharkovskii's Theorem: New Perspectives (Proc. Conf.), World Scientific, 1995, pp. 1-11.
    • (1964) Ukrain. Mat. Zhum , vol.16 , Issue.1 , pp. 61-70
    • Sharkovsky, A.N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.