-
5
-
-
0001920214
-
-
B. P. Barber, R. A. Hiller, R. Löfstedt, S. J. Putterman, and K. R. Weninger, Phys. Rep. 281, 67 (1997).
-
(1997)
Phys. Rep.
, vol.281
, pp. 67
-
-
Barber, B.P.1
Hiller, R.A.2
Löfstedt, R.3
Putterman, S.J.4
Weninger, K.R.5
-
7
-
-
11944253659
-
-
T. Matula, R. A. Roy, P. D. Mourad, W. B. McNamara III, and K. S. Suslick, Phys. Rev. Lett. 75, 2602 (1995).
-
(1995)
Phys. Rev. Lett.
, vol.75
, pp. 2602
-
-
Matula, T.1
Roy, R.A.2
Mourad, P.D.3
McNamara III, W.B.4
Suslick, K.S.5
-
8
-
-
84893917122
-
-
note
-
2 lamps. No spectra are corrected for transmission of water or quartz. For quartz, but not suprasil, there is absorption for wavelengths below 300 nm that rises to 25% at 200 nm. We attribute the bump in the data at 550 nm and the dip at 360 nm to documented errors in the manufacturer-supplied calibration of our lamps (see Fig. 75 of Ref. 5).
-
-
-
-
9
-
-
84893919281
-
-
note
-
The spectra reported here have the same spectral density and detailed shape as reported in previous papers. But in the course of recalibrating the system we find that the scale for the y axis, namely, spectral radiance, is generally lower, being down by roughly a factor of 12 compared with what was reported in Refs. 3 and 6. We have verified the new data calibrated against various lamp standards with photon counting through bandpass filters. Previously quoted values of photons per flash remain unchanged. We believe that the mistake in scaling the y axis is greater than can be accounted for by resonator variability, drive level, or thermal drift (see the discussion in Ref. 5). The corrected value of radiance plus our ability to measure flash width and bubble size combine to make possible the quantitative comparisons with blackbody radiation that are proposed here.
-
-
-
-
10
-
-
0012857124
-
-
J. Maddox, Nature 361, 397 (1993).
-
(1993)
Nature
, vol.361
, pp. 397
-
-
Maddox, J.1
-
12
-
-
0000409663
-
-
B. Gompf, R. Günther, G. Nick, R. Pecha, and W. Eisenmenger, Phys. Rev. Lett. 79, 1405 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.79
, pp. 1405
-
-
Gompf, B.1
Günther, R.2
Nick, G.3
Pecha, R.4
Eisenmenger, W.5
-
15
-
-
0029251734
-
-
S. Putterman, Sci. Am. 272(2), 46 (1995).
-
(1995)
Sci. Am.
, vol.272
, Issue.2
, pp. 46
-
-
Putterman, S.1
-
19
-
-
84893890690
-
Blackbody spectra for sonoluminescing hydrogen bubbles
-
G. Vazquez, C. Camara, S. Putterman, and K. Weninger, "Blackbody spectra for sonoluminescing hydrogen bubbles" (submitted to Phys. Rev. Lett.), also present data that indicate an ambient radius of ∼3.0 μm.
-
Phys. Rev. Lett.
-
-
Vazquez, G.1
Camara, C.2
Putterman, S.3
Weninger, K.4
-
20
-
-
0039423706
-
-
Ph.D. dissertation University of California, Los Angeles, Los Angeles, Calif.
-
R. Hiller, "Spectrum of single bubble sonoluminescence," Ph.D. dissertation (University of California, Los Angeles, Los Angeles, Calif., 1995).
-
(1995)
Spectrum of Single Bubble Sonoluminescence
-
-
Hiller, R.1
-
24
-
-
0029727505
-
-
R. J. Thomas, D. X. Hammer, G. D. Noojin, D. J. Stolarski, B. A. Rockwell, and W. P. Roach, Proc. SPIE 2681, 402 (1996).
-
(1996)
Proc. SPIE
, vol.2681
, pp. 402
-
-
Thomas, R.J.1
Hammer, D.X.2
Noojin, G.D.3
Stolarski, D.J.4
Rockwell, B.A.5
Roach, W.P.6
-
25
-
-
84893903029
-
Spectrum of luminescence from bubble collapse: Light from a plasma
-
O. Baghdassarian, B. Tabbert, and G. A. Williams, in "Spectrum of luminescence from bubble collapse: light from a plasma," (submitted to Phys. Rev. Lett.), report blackbody-like spectral densities from laser-generated plasmas in water and from the ensuing cavitation collapse.
-
Phys. Rev. Lett.
-
-
Baghdassarian, O.1
Tabbert, B.2
Williams, G.A.3
-
30
-
-
18644364406
-
-
describe the 1- and 11-MHz techniques
-
K. Weninger, C. G. Camara, and S. J. Putterman, Phys. Rev. E 63, 016310 (2001), describe the 1-and 11-MHz techniques.
-
(2001)
Phys. Rev. E
, vol.63
, pp. 016310
-
-
Weninger, K.1
Camara, C.G.2
Putterman, S.J.3
|