-
1
-
-
51249180884
-
Nonlinear evolution equations and ordinary differential equations ofPainlevé type
-
[ARS1]
-
[ARS1] M. J. Ablowitz, A. Ramani, and H. Segur, Nonlinear evolution equations and ordinary differential equations ofPainlevé type, Lett. Nuovo Cimento (2) 23 (1978), 333-338.
-
(1978)
Lett. Nuovo Cimento
, vol.23
, Issue.2
, pp. 333-338
-
-
Ablowitz, M.J.1
Ramani, A.2
Segur, H.3
-
2
-
-
36749106124
-
A connection between nonlinear evolution equations and ordinary differential equations of P type. I
-
[ARS2]
-
[ARS2] _, A connection between nonlinear evolution equations and ordinary differential equations of P type. I, J. Math. Phys. 21 (1980), 715-721; II, 1006-1015.
-
(1980)
J. Math. Phys.
, vol.21
, pp. 715-721
-
-
-
4
-
-
33646038770
-
Symplectic structure of the moduli space of flat connection on a Riemann surface
-
[AM]
-
[AM] A. Yu. Alekseev and A. Z. Malkin, Symplectic structure of the moduli space of flat connection on a Riemann surface, Comm. Math. Phys. 169 (1995), 99-119.
-
(1995)
Comm. Math. Phys.
, vol.169
, pp. 99-119
-
-
Alekseev, A.Yu.1
Malkin, A.Z.2
-
5
-
-
0038968437
-
Lectures on gauge theory and integrable systems
-
[A] Gauge Theory and Symplectic Geometry (Montreal, PQ, 1995), Kluwer Acad. Publ., Dordrecht
-
[A] M. Audin, "Lectures on gauge theory and integrable systems" in Gauge Theory and Symplectic Geometry (Montreal, PQ, 1995), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 488, Kluwer Acad. Publ., Dordrecht, 1997, 1-48.
-
(1997)
NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.
, vol.488
, pp. 1-48
-
-
Audin, M.1
-
6
-
-
0003069227
-
Birkhoff invariants and Stokes' multipliers for meromorphic linear differential equations
-
[BJL1]
-
[BJL1] W. Baiser, W. B. Jurkat, and D. A. Lutz, Birkhoff invariants and Stokes' multipliers for meromorphic linear differential equations, J. Math. Anal. Appl. 71 (1979), 48-94.
-
(1979)
J. Math. Anal. Appl.
, vol.71
, pp. 48-94
-
-
Baiser, W.1
Jurkat, W.B.2
Lutz, D.A.3
-
7
-
-
0001661861
-
On the reduction of connection problems for differential equations with an irregular singular point to ones with only regular singularities, I
-
[BJL2]
-
[BJL2] _, On the reduction of connection problems for differential equations with an irregular singular point to ones with only regular singularities, I, SIAM J. Math. Anal. 12 (1981), 691-721.
-
(1981)
SIAM J. Math. Anal.
, vol.12
, pp. 691-721
-
-
-
9
-
-
0000644797
-
Geometry of 2D topological field theories
-
[D1] Integrable Systems and Quantum Group (Montecatini Terme, 1993), ed. M. Francaviglia and S. Greco, Springer Springer, Berlin
-
[D1] B. Dubrovin, "Geometry of 2D topological field theories" in Integrable Systems and Quantum Group (Montecatini Terme, 1993), ed. M. Francaviglia and S. Greco, Springer Lecture Notes in Math. 1620, Springer, Berlin, 1996, 120-348.
-
(1996)
Lecture Notes in Math.
, vol.1620
, pp. 120-348
-
-
Dubrovin, B.1
-
10
-
-
0346592382
-
Painlevé transcendents in two-dimensional topological field theory
-
[D2] to appear in Painlevé Transcendents: One Century Later
-
[D2] _,"Painlevé transcendents in two-dimensional topological field theory" to appear in Painlevé Transcendents: One Century Later, Proceedings of 1996 Cargese summer school; preprint, 1998.
-
(1998)
Proceedings of 1996 Cargese summer school
-
-
-
11
-
-
0003536517
-
Hamiltonian Methods in the Theory of Solitons
-
[FT], Springer-Verlag, Berlin
-
[FT] L. D. Faddeev and L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1987.
-
(1987)
Springer Ser. Soviet Math.
-
-
Faddeev, L.D.1
Takhtajan, L.A.2
-
12
-
-
34250256469
-
Monodromy- And spectrum-preserving deformations I
-
[FN1]
-
[FN1] H. Flaschka and A. G. Newell, Monodromy- and spectrum-preserving deformations I, Comm. Math. Phys. 76 (1980), 65-116.
-
(1980)
Comm. Math. Phys.
, vol.76
, pp. 65-116
-
-
Flaschka, H.1
Newell, A.G.2
-
13
-
-
0345960666
-
The inverse monodromy transform is a canonical transformation
-
[FN2] Nonlinear Problems: Present and Future (Los Alamos, NM, 1981), North Holland, Amsterdam
-
[FN2] _, "The inverse monodromy transform is a canonical transformation" in Nonlinear Problems: Present and Future (Los Alamos, NM, 1981), North Holland Math. Stud. 61, North Holland, Amsterdam, 1982, 65-89.
-
(1982)
North Holland Math. Stud.
, vol.61
, pp. 65-89
-
-
-
15
-
-
0000892726
-
Sur quelques équations différentielles linéaires du second ordre
-
[Fu]
-
[Fu] R. Fuchs, Sur quelques équations différentielles linéaires du second ordre, G. R. Acad. Sci. Paris 141 (1905), 555-558.
-
(1905)
G. R. Acad. Sci. Paris
, vol.141
, pp. 555-558
-
-
Fuchs, R.1
-
16
-
-
0002712004
-
Sur les équations différentielles du troisième ordre dont l'intégral générale est uniforme et sur une classe d'équations nouvelles d'ordre superieur dont l'intégral générale a ses points critiques fixés
-
[G1]
-
[G1] R. Garnier, Sur les équations différentielles du troisième ordre dont l'intégral générale est uniforme et sur une classe d'équations nouvelles d'ordre superieur dont l'intégral générale a ses points critiques fixés, Ann. Sci. Ecole Norm. Sup. 29 (1912), 1-126.
-
(1912)
Ann. Sci. Ecole Norm. Sup.
, vol.29
, pp. 1-126
-
-
Garnier, R.1
-
17
-
-
0346591990
-
Solution du problème de Riemann pour les sistèmes différentielles dont l'intégral générale est à points critiques fixés
-
[G2]
-
[G2] _, Solution du problème de Riemann pour les sistèmes différentielles dont l'intégral générale est à points critiques fixés, Ann. Sci. Ecole Norm. Sup. 43 (1926), 177-307.
-
(1926)
Ann. Sci. Ecole Norm. Sup.
, vol.43
, pp. 177-307
-
-
-
18
-
-
21844488807
-
Dual isomonodromic deformations and moment maps to loop algebras
-
[Ha1]
-
[Ha1] J. Harnad, Dual isomonodromic deformations and moment maps to loop algebras, Comm. Math. Phys. 166 (1994), 337-365.
-
(1994)
Comm. Math. Phys.
, vol.166
, pp. 337-365
-
-
Harnad, J.1
-
19
-
-
0002189614
-
Quantum isomonodromic deformations and the Knizhnik-Zamolodchikov equations
-
[Ha2] Symmetries and Integrability of Difference Equations (Estérel, PQ, 1994), Amer. Math. Soc., Providence
-
[Ha2] _, "Quantum isomonodromic deformations and the Knizhnik-Zamolodchikov equations" in Symmetries and Integrability of Difference Equations (Estérel, PQ, 1994), CRM Proc. Lecture Notes 9, Amer. Math. Soc., Providence, 1996, 155-161.
-
(1996)
CRM Proc. Lecture Notes
, vol.9
, pp. 155-161
-
-
-
20
-
-
0002376028
-
Frobenius manifolds
-
[Hi] Gauge Theory and Symplectic Geometry (Montreal, PQ, 1995), Kluwer Acad. Publ., Dordrecht
-
[Hi] N. Hitchin, "Frobenius manifolds" in Gauge Theory and Symplectic Geometry (Montreal, PQ, 1995), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 488, Kluwer Acad. Publ., Dordrecht, 1997, 69-112.
-
(1997)
NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.
, vol.488
, pp. 69-112
-
-
Hitchin, N.1
-
22
-
-
0003219756
-
The isomonodromic deformation method in the theory of Painlevé equations
-
[IN], Springer-Verlag, Berlin
-
[IN] A. R. Its and V. Yu. Novokshenov, The isomonodromic deformation method in the theory of Painlevé equations, Lecture Notes in Math. 1191, Springer-Verlag, Berlin, 1986.
-
(1986)
Lecture Notes in Math.
, vol.1191
-
-
Its, A.R.1
Novokshenov, V.Yu.2
-
23
-
-
49049148970
-
Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II
-
[JM]
-
[JM] M. Jimbo and T. Miwa, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II. Phys. D 2 (1981), 407-448.
-
(1981)
Phys. D
, vol.2
, pp. 407-448
-
-
Jimbo, M.1
Miwa, T.2
-
24
-
-
49149137872
-
Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I
-
[JMU]
-
[JMU] M. Jimbo, T. Miwa, and K. Ueno, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. Phys. D 2 (1981), 306-352.
-
(1981)
Phys. D
, vol.2
, pp. 306-352
-
-
Jimbo, M.1
Miwa, T.2
Ueno, K.3
-
25
-
-
0039466847
-
Quantization of coset space σ-models coupled to two-dimensional gravity
-
[KS]
-
[KS] D. Korotkin and H. Samtleben, Quantization of coset space σ-models coupled to two-dimensional gravity, Comm. Math. Phys. 190 (1997), 411-457.
-
(1997)
Comm. Math. Phys.
, vol.190
, pp. 411-457
-
-
Korotkin, D.1
Samtleben, H.2
-
26
-
-
0001027731
-
The Knizhnik-Zamolodchikov system as a deformation of the isomonodromy problem
-
[R]
-
[R] N. Reshetikhin, The Knizhnik-Zamolodchikov system as a deformation of the isomonodromy problem, Lett. Math. Phys. 26 (1992), 167-177.
-
(1992)
Lett. Math. Phys.
, vol.26
, pp. 167-177
-
-
Reshetikhin, N.1
-
27
-
-
84985400050
-
-1A)x(t) und zweier Arten von assoziierten Funktionen
-
[Seh]
-
-1A)x(t) und zweier Arten von assoziierten Funktionen, Math. Nachr. 121 (1985), 123-145.
-
(1985)
Math. Nachr.
, vol.121
, pp. 123-145
-
-
Schäfke, R.1
-
28
-
-
84943464695
-
Über eine Klasse von Differentsialsystemen beliebliger Ordnung mit festen kritischer Punkten
-
[Schi]
-
[Schi] L. Schlesinger, Über eine Klasse von Differentsialsystemen beliebliger Ordnung mit festen kritischer Punkten, J. für Math. 141 (1912), 96-145.
-
(1912)
J. Für Math.
, vol.141
, pp. 96-145
-
-
Schlesinger, L.1
-
29
-
-
0003209740
-
Linear Differential Equations in the Complex Domain: Problems of Analytic Continuation
-
[Si], Amer. Math. Soc., Providence
-
[Si] Y. Sibuya, Linear Differential Equations in the Complex Domain: Problems of Analytic Continuation, Trans. Amer. Math. Monogr. 82, Amer. Math. Soc., Providence, 1990.
-
(1990)
Trans. Amer. Math. Monogr.
, vol.82
-
-
Sibuya, Y.1
-
30
-
-
0346591994
-
Monodromy preserving deformation of linear differential equations with irregular singular points
-
[U1]
-
[U1] K. Ueno, Monodromy preserving deformation of linear differential equations with irregular singular points, Proc. Japan Acad. Ser. A Math. Sci. 56 (1980), 97-102.
-
(1980)
Proc. Japan Acad. Ser. A Math. Sci.
, vol.56
, pp. 97-102
-
-
Ueno, K.1
-
31
-
-
0011793586
-
Monodromy preserving deformation and its application to soliton theory I
-
[U2]
-
[U2] _, Monodromy preserving deformation and its application to soliton theory I, Proc. Japan Acad. Ser. A 56 (1980), 103-108: II, 210-215.
-
(1980)
Proc. Japan Acad. Ser. A
, vol.56
, pp. 103-108
-
-
-
33
-
-
34250461398
-
Korteweg-de Vries equation, a completely integrable Hamiltonian system
-
[ZF]
-
[ZF] V. E. Zakharov and L. D. Faddeev, Korteweg-de Vries equation, a completely integrable Hamiltonian system, Funct. Anal. Appl. 5 (1971), 280-287.
-
(1971)
Funct. Anal. Appl.
, vol.5
, pp. 280-287
-
-
Zakharov, V.E.1
Faddeev, L.D.2
|