-
3
-
-
33947090431
-
-
(a) Mitsunobu, O.; Wada, M.; Sano, T. J. Am. Chem. Soc. 1972, 94, 679-680.
-
(1972)
J. Am. Chem. Soc.
, vol.94
, pp. 679-680
-
-
Mitsunobu, O.1
Wada, M.2
Sano, T.3
-
6
-
-
0000865359
-
-
Lal, B.; Pramanik, B. N.; Manhas, M. S.; Bose, A. K. Tetrahedron Lett. 1977, 1977-1980.
-
(1977)
Tetrahedron Lett.
, pp. 1977-1980
-
-
Lal, B.1
Pramanik, B.N.2
Manhas, M.S.3
Bose, A.K.4
-
8
-
-
33751385202
-
-
Thompson, A. S.; Humphrey, G. R.; Demarco, A. M.; Mathre, D. J.; Grabowski, J. J. J. Org. Chem. 1993, 58, 5886-5888.
-
(1993)
J. Org. Chem.
, vol.58
, pp. 5886-5888
-
-
Thompson, A.S.1
Humphrey, G.R.2
Demarco, A.M.3
Mathre, D.J.4
Grabowski, J.J.5
-
9
-
-
0043013642
-
-
Wiley: New York, Collect.
-
Shioriri, T.; Yamada, S. Organic Syntheses; Wiley: New York, 1990; Collect. Vol. VII, pp 206-207.
-
(1990)
Organic Syntheses
, vol.7
, pp. 206-207
-
-
Shioriri, T.1
Yamada, S.2
-
10
-
-
85037503057
-
-
note
-
Caution: Azides especially bisazidated products are potentially explosive and should be handled with care. The procedure should be performed in a well-ventilated hood.
-
-
-
-
11
-
-
85037517185
-
-
note
-
3) data for the azide products listed in Table 1: δ ppm 11: 8.14 (d, J = 8.4 Hz, 2H), 7.60-7.52 (m. 4H), 7.39-7.29 (m 8H), 4.83 (t, J = 5.8 Hz, 1H), 3.80-3.69 (m, 1H), 3.58-3.50 (m. 1H), 1.94-1.80 (m, 2H). 1.10 (s, 9H); 12: 8.22 (dd, J= 1.8, 6.8 Hz, 2H), 7.52 (dd, J = 0.3. 6.9 Hz, 2H), 4.83 (dd. J = 4.5, 9.0 Hz, 1H), 4.60 (d, J = 69 Hz. 1H), 0.4.51 (d. J= 1.2. 6.8 Hz, 1H), 3.51-3.40 (m, 2H), 3.37 (s, 3H) 2.07-2.02 (m, 1H), 1.93-1.89 (m, 1H); 13: 7.40-7.32 (m, 4H), 4.69 (d, J = 5.9 Hz. 2H), 4.45 (s. 2H), 2.52 (t, J = 5.9 Hz, 1H); 14: 7.68 (d J = 8.0 Hz, 1H), 7.53 (t, J = 7.1 Hz. 1H), 7.38 (t, J = 7.9 Hz, 2H). 3.53 (t, J = 7.3 Hz, 2H), 3.10 (t, J = 7.3 Hz, 2H); 15: 7.69 (d, J = 7.7 Hz. 4H), 7.50-7.32 (m, 10H), 4.80 (s, 2H), 4.34 (s, 2H), 1.09 (s, 9H); 16: 7.73-7.69 (m, 4H), 7.48-7.42 (m, 6H). 3.79 (t, J = 5.9 Hz, 2H), 3.49 (t, J = 6.8 Hz, 2H), 1.85 (p, J = 6.3 Hz, 2H), 1.10 (s, 9H); 17: 7.78-7.73 (m, 4H), 7.49-7.43 (m, 6H), 3.75 (t, J = 6.1 Hz, 2H), 3.29 (t, J = 6.8 Hz, 2H), 1.69-1.55 (m, 6H), 1.14 (s, 9H); 18: 7.75-7.70 (m, 4H), 7.46-7.42 (m. 6H), 3.72 (t, J = 6.2 Hz, 2H), 3.28 (t, J = 6.9 Hz, 2H), 1.64-1.58 (m. 4H), 1.43-1.37 (m, 6H), 1.11 (s, 9H).
-
-
-
-
12
-
-
0343049175
-
-
Guha, A. K.; Lee, W.; Lee, I. J. Org. Chem. 2000, 65, 12-15.
-
(2000)
J. Org. Chem.
, vol.65
, pp. 12-15
-
-
Guha, A.K.1
Lee, W.2
Lee, I.3
-
13
-
-
23044505158
-
-
and references therein
-
The mechanism of phosphoryl transfer from phosphate monoesters and diesters has been the subject of many recent investigations. See: Thatcher, G. R. J.; Luger, R. K. Adv. Phys. Org. Chem. 1989, 25, 99-103 and references therein.
-
(1989)
Adv. Phys. Org. Chem.
, vol.25
, pp. 99-103
-
-
Thatcher, G.R.J.1
Luger, R.K.2
-
14
-
-
85037500533
-
-
note
-
For example, sodium cyanide might be used in place of sodium azide to convert alcohols to the corresponding chain extended nitriles in a similar "one-pot" procedure.
-
-
-
|