-
1
-
-
0031235080
-
-
N. B. Zhitenev, R. C. Ashoori, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 79, 2308 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.79
, pp. 2308
-
-
Zhitenev, N.1
Ashoori, R.2
Pfeiffer, L.3
West, K.4
-
2
-
-
4244054083
-
-
R. C. Ashoori, H. L. Stormer, J. C. Weiner, L. N. Pfeiffer, K. W. Baldwin, S. J. Pearton, and K. W. West, Phys. Rev. Lett. 68, 3088 (1992).
-
(1992)
Phys. Rev. Lett.
, vol.68
, pp. 3088
-
-
Ashoori, R.1
Stormer, H.2
Weiner, J.3
Pfeiffer, L.4
Baldwin, K.5
Pearton, S.6
West, K.7
-
3
-
-
0001047663
-
-
Phys. Rev. Lett.R. C. Ashoori, H. L. Stormer, J. C. Weiner, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, 71, 613 (1993).
-
(1993)
Phys. Rev. Lett.
, vol.71
, pp. 613
-
-
Ashoori, R.1
Stormer, H.2
Weiner, J.3
Pfeiffer, L.4
Baldwin, K.5
West, K.6
-
9
-
-
0003919621
-
-
Reed Educational and Professional Publishing, Exeter
-
L. D. Landau and E. M. Lifshitz, Elasticity Theory (Reed Educational and Professional Publishing, Exeter, 1996), Sec. 7, Problem 5.
-
(1996)
Elasticity Theory
-
-
Landau, L.1
Lifshitz, E.2
-
11
-
-
0001096451
-
-
P. M. Bleher, Z. Cheng, F. J. Dyson, and J. L. Lebowitz, Commun. Math. Phys. 154, 433 (1993).
-
(1993)
Commun. Math. Phys.
, vol.154
, pp. 433
-
-
Bleher, P.1
Cheng, Z.2
Dyson, F.3
Lebowitz, J.4
-
13
-
-
0003858739
-
-
Reed Educational and Professional Publishing, Exeter
-
L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1 (Reed Educational and Professional Publishing, Exeter, 1996), Sec. 24.
-
(1996)
Statistical Physics, Part 1
-
-
Landau, L.1
Lifshitz, E.2
-
14
-
-
0010169695
-
-
see also cond-mat/9509133 (unpublished)
-
Y. V. Nazarov, Europhys. Lett. 32, 443-8 (1996); see also cond-mat/9509133 (unpublished).
-
(1996)
Europhys. Lett.
, vol.32
, pp. 443-8
-
-
Nazarov, Y.1
-
15
-
-
0019709612
-
-
For the deformations induced by the variable density of electrons it is true that (Formula presented), where (Formula presented) is the density of disclinations, (Formula presented) is the completely antisymmetric tensor, and (Formula presented) is the scalar curvature. Assuming no free disclinations (Formula presented), we obtain Eq. (5.3) for the transverse component of the Burgers vector density
-
Equation (5.3) is a consequence of a more general statement that the total density of disclinations is equal to the curvature tensor in the crystal [see R. de Wit, Int. J. Eng. Sci. 19, 1475 (1981)]. For the deformations induced by the variable density of electrons it is true that (Formula presented), where (Formula presented) is the density of disclinations, (Formula presented) is the completely antisymmetric tensor, and (Formula presented) is the scalar curvature. Assuming no free disclinations (Formula presented), we obtain Eq. (5.3) for the transverse component of the Burgers vector density.
-
(1981)
Int. J. Eng. Sci.
, vol.19
, pp. 1475
-
-
de Wit, R.1
|