-
2
-
-
85037886845
-
-
See, e.g., Microcavities and Photonic Bandgaps: Physics and Applications, edited by C. Weisbuch and J. Rarity, Vol. 324 of NATO Advanced Studies Institute, Series E: Applied Sciences (Kluwer, Dordrecht, 1996).
-
See, e.g., Microcavities and Photonic Bandgaps: Physics and Applications, edited by C. Weisbuch and J. Rarity, Vol. 324 of NATO Advanced Studies Institute, Series E: Applied Sciences (Kluwer, Dordrecht, 1996).
-
-
-
-
3
-
-
4644242654
-
-
C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, Phys. Rev. Lett. 69, 3314 (1992).
-
(1992)
Phys. Rev. Lett.
, vol.69
, pp. 3314
-
-
Weisbuch, C.1
Nishioka, M.2
Ishikawa, A.3
Arakawa, Y.4
-
4
-
-
0000903102
-
-
T. B. Norris, J. K. Rhee, C. Y. Sung, Y. Arakawa, M. Nishioka, and C. Weisbuch, Phys. Rev. B 50, 14 663 (1994).
-
(1994)
Phys. Rev. B
, vol.50
, pp. 14 663
-
-
Norris, T.B.1
Rhee, J.K.2
Sung, C.Y.3
Arakawa, Y.4
Nishioka, M.5
Weisbuch, C.6
-
5
-
-
0032117645
-
-
For recent reviews, see M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, Supercond. Sci. Technol. 13, 645 (1998);
-
(1998)
Supercond. Sci. Technol.
, vol.13
, pp. 645
-
-
Skolnick, M.S.1
Fisher, T.A.2
Whittaker, D.M.3
-
6
-
-
0004101886
-
-
Gordon and Breach, New York
-
V. Savona, C. Piermarocchi, A. Quattropani, P. Schwendimann, and F. Tassone, in New Aspects in Optical Properties of Nanostructures, Vol. 68 of Phase Transitions (Gordon and Breach, New York, 1999).
-
(1999)
New Aspects in Optical Properties of Nanostructures, Vol. 68 of Phase Transitions
-
-
Savona, V.1
Piermarocchi, C.2
Quattropani, A.3
Schwendimann, P.4
Tassone, F.5
-
7
-
-
0030189172
-
-
J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, Appl. Phys. Lett. 69, 449 (1996).
-
(1996)
Appl. Phys. Lett.
, vol.69
, pp. 449
-
-
Gérard, J.M.1
Barrier, D.2
Marzin, J.Y.3
Kuszelewicz, R.4
Manin, L.5
Costard, E.6
Thierry-Mieg, V.7
Rivera, T.8
-
8
-
-
0000858781
-
-
J. P. Reithmaier, M. Röhner, H. Zull, F. Schäfer, A. Forchel, P. A. Knipp, and T. L. Reinecke, Phys. Rev. Lett. 78, 378 (1997);
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 378
-
-
Reithmaier, J.P.1
Röhner, M.2
Zull, H.3
Schäfer, F.4
Forchel, A.5
Knipp, P.A.6
Reinecke, T.L.7
-
9
-
-
0000128152
-
-
B. Ohnesorge, M. Bayer, A. Forchel, J. P. Reithmaier, N. A. Gippius, and S. G. Tikhodeev, Phys. Rev. B 56, R4367 (1997).
-
(1997)
Phys. Rev. B
, vol.56
, pp. R4367
-
-
Ohnesorge, B.1
Bayer, M.2
Forchel, A.3
Reithmaier, J.P.4
Gippius, N.A.5
Tikhodeev, S.G.6
-
10
-
-
0348198792
-
-
J. Bloch, F. Boeuf, J. M. Gérard, B. Legrand, J. Y. Marzin, R. Planel, V. Thierry-Mieg, and E. Costard, Phys. Rev. E 2, 915 (1998).
-
(1998)
Phys. Rev. E
, vol.2
, pp. 915
-
-
Bloch, J.1
Boeuf, F.2
Gérard, J.M.3
Legrand, B.4
Marzin, J.Y.5
Planel, R.6
Thierry-Mieg, V.7
Costard, E.8
-
11
-
-
11544343614
-
-
J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, Phys. Rev. Lett. 81, 1110 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 1110
-
-
Gérard, J.M.1
Sermage, B.2
Gayral, B.3
Legrand, B.4
Costard, E.5
Thierry-Mieg, V.6
-
12
-
-
0000585386
-
-
T. Gutbrod, M. Bayer, A. Forchel, J. P. Reithmaier, T. L. Reinecke, S. Rudin, and P. A. Knipp, Phys. Rev. B 57, 9950 (1998).
-
(1998)
Phys. Rev. B
, vol.57
, pp. 9950
-
-
Gutbrod, T.1
Bayer, M.2
Forchel, A.3
Reithmaier, J.P.4
Reinecke, T.L.5
Rudin, S.6
Knipp, P.A.7
-
13
-
-
0001210229
-
-
G. Panzarini, L. C. Andreani, A. Armitage, D. Baxter, M. S. Skolnick, V. N. Astratov, J. S. Roberts, A. V. Kavokin, M. R. Vladimirova, and M. A. Kaliteevski, Phys. Rev. B 59, 5082 (1999).
-
(1999)
Phys. Rev. B
, vol.59
, pp. 5082
-
-
Panzarini, G.1
Andreani, L.C.2
Armitage, A.3
Baxter, D.4
Skolnick, M.S.5
Astratov, V.N.6
Roberts, J.S.7
Kavokin, A.V.8
Vladimirova, M.R.9
Kaliteevski, M.A.10
-
14
-
-
0004055235
-
-
Saunders College, San Francisco
-
A. Yariv, Optical Electronics (Saunders College, San Francisco, 1991).
-
(1991)
Optical Electronics
-
-
Yariv, A.1
-
16
-
-
85037916436
-
-
Typically lateral confinement produces a blueshift of the exciton energy of the order of (Formula presented) for radii (Formula presented); the corresponding blueshift of the fundamental cavity mode is about 30 meV.
-
Typically lateral confinement produces a blueshift of the exciton energy of the order of (Formula presented) for radii (Formula presented); the corresponding blueshift of the fundamental cavity mode is about 30 meV.
-
-
-
-
19
-
-
0001410523
-
-
S. Haas, T. Stroucken, M. Hübner, J. Kuhl, B. Grote, A. Knorr, F. Janke, S. W. Koch, R. Hey, and K. Ploog, Phys. Rev. B 57, 14 860 (1998).
-
(1998)
Phys. Rev. B
, vol.57
, pp. 14 860
-
-
Haas, S.1
Stroucken, T.2
Hübner, M.3
Kuhl, J.4
Grote, B.5
Knorr, A.6
Janke, F.7
Koch, S.W.8
Hey, R.9
Ploog, K.10
-
20
-
-
85037903612
-
-
We have assumed the same oscillator strength (Formula presented) for all radii: the energy dependence of f is therefore neglected. This effect (which is shown in Ref. 10 to give a weak additional size dependence of the Rabi splitting) cannot be simply evaluated using (Formula presented) theory to lowest order, since using the momentum or dipole interactions would yield different size dependences. To avoid the complications of a higher order (Formula presented) calculation, we have chosen to focus on the more interesting size dependence given by the overlap coupling matrix (Formula presented)
-
We have assumed the same oscillator strength (Formula presented) for all radii: the energy dependence of f is therefore neglected. This effect (which is shown in Ref. 10 to give a weak additional size dependence of the Rabi splitting) cannot be simply evaluated using (Formula presented) theory to lowest order, since using the momentum or dipole interactions would yield different size dependences. To avoid the complications of a higher order (Formula presented) calculation, we have chosen to focus on the more interesting size dependence given by the overlap coupling matrix (Formula presented)
-
-
-
|