-
2
-
-
0000913941
-
-
(b)
-
(b) Larock, R. C.; Doty, M. J.; Cacchi, S. J. J. Org. Chem. 1993, 58, 4579.
-
(1993)
J. Org. Chem.
, vol.58
, pp. 4579
-
-
Larock, R.C.1
Doty, M.J.2
Cacchi, S.J.3
-
3
-
-
0029042650
-
-
(c)
-
(c) Larock, R. C.; Yum, E. K.; Doty, M. J.; Sham, K. K. C. J. Org. Chem. 1995, 60, 3270.
-
(1995)
J. Org. Chem.
, vol.60
, pp. 3270
-
-
Larock, R.C.1
Yum, E.K.2
Doty, M.J.3
Sham, K.K.C.4
-
4
-
-
0001375982
-
-
(d)
-
(d) Larock, R. C.; Doty, M. J.; Tian, Q.; Zenner, J. M. J. Org. Chem. 1997, 62, 7536.
-
(1997)
J. Org. Chem.
, vol.62
, pp. 7536
-
-
Larock, R.C.1
Doty, M.J.2
Tian, Q.3
Zenner, J.M.4
-
5
-
-
0032491016
-
-
(e)
-
(e) Larock, R. C.; Han, X.; Doty, M. J. Tetrahedron Lett. 1998, 39, 5713.
-
(1998)
Tetrahedron Lett.
, vol.39
, pp. 5713
-
-
Larock, R.C.1
Han, X.2
Doty, M.J.3
-
7
-
-
0001605581
-
-
(g)
-
(g) Quan, L. G.; Gevorgyan, V.; Yamamoto, Y. J. Am. Chem. Soc. 1999, 121, 3545.
-
(1999)
J. Am. Chem. Soc.
, vol.121
, pp. 3545
-
-
Quan, L.G.1
Gevorgyan, V.2
Yamamoto, Y.3
-
9
-
-
0033570242
-
-
(i)
-
(i) Radhakrishnan, K. V.; Yoshikawa, E.; Yamamoto, Y. Tetrahedron Lett. 1999, 40, 7533.
-
(1999)
Tetrahedron Lett.
, vol.40
, pp. 7533
-
-
Radhakrishnan, K.V.1
Yoshikawa, E.2
Yamamoto, Y.3
-
10
-
-
0018874182
-
-
(a)
-
(a) Grivsky, E. M.; Lee, S.; Siegel, C. W.; Nichol, C. A. J. Med. Chem. 1980, 23, 327.
-
(1980)
J. Med. Chem.
, vol.23
, pp. 327
-
-
Grivsky, E.M.1
Lee, S.2
Siegel, C.W.3
Nichol, C.A.4
-
12
-
-
0000295753
-
-
Rho, K. Y.; Kim, J. H.; Kim, S. H.; Yoon, C. M. Heterocycles 1998, 12, 2521.
-
(1998)
Heterocycles
, vol.12
, pp. 2521
-
-
Rho, K.Y.1
Kim, J.H.2
Kim, S.H.3
Yoon, C.M.4
-
13
-
-
0033973637
-
-
Rho, Y. H.; Bae, J. W.; Nam, G. S.; Kim, J. H.; Kim, S. H.; Yoon, C. M. Synth. Commun. 2000, 30, 81.
-
(2000)
Synth. Commun.
, vol.30
, pp. 81
-
-
Rho, Y.H.1
Bae, J.W.2
Nam, G.S.3
Kim, J.H.4
Kim, S.H.5
Yoon, C.M.6
-
14
-
-
84991430995
-
-
One equivalent of lithium chloride in the reaction was identified to be the optimal amount for the selectivity. When 2 equiv. of lithium chloride was used, several other side products were observed by TLC. When 0.5 equiv. of lithium chloride was used, the selectivity was decreased. In this case, 14% of deaminated product 3a was obtained
-
One equivalent of lithium chloride in the reaction was identified to be the optimal amount for the selectivity. When 2 equiv. of lithium chloride was used, several other side products were observed by TLC. When 0.5 equiv. of lithium chloride was used, the selectivity was decreased. In this case, 14% of deaminated product 3a was obtained.
-
-
-
-
15
-
-
84991414816
-
-
The reaction of iodouracil 1a with 1-phenyl-1-propyne 2b in the absence of lithium chloride resulted in less selectivity, as shown below
-
The reaction of iodouracil 1a with 1-phenyl-1-propyne 2b in the absence of lithium chloride resulted in less selectivity, as shown below.
-
-
-
-
16
-
-
84991413230
-
-
2 bond in the absence of lithium chloride is possible to form intermediate II (Scheme 2)
-
2 bond in the absence of lithium chloride is possible to form intermediate II (Scheme 2).
-
-
-
-
17
-
-
84991411562
-
-
3 (82 mg, 0.595 mmol), lithium chloride (12.6 mg, 0.297 mmol) and diphenylacetylene (80 mg, 0.446 mmol). The resulting solution was stirred at 120°C for 1.5 h under nitrogen, concentrated under reduced pressure and chromatographed on silica gel using a solution of ethyl acetate:hexane (1:10). Eluent concentration gave two pyrido[2,3-d]pyrimidines as a white solid
-
3 (82 mg, 0.595 mmol), lithium chloride (12.6 mg, 0.297 mmol) and diphenylacetylene (80 mg, 0.446 mmol). The resulting solution was stirred at 120°C for 1.5 h under nitrogen, concentrated under reduced pressure and chromatographed on silica gel using a solution of ethyl acetate:hexane (1:10). Eluent concentration gave two pyrido[2,3-d]pyrimidines as a white solid.
-
-
-
|