-
1
-
-
0027652515
-
Fractional Fourier transforms and their optical implementation: I
-
D. Mendlovic and H. M. Ozaktas, “Fractional Fourier transforms and their optical implementation: I,” J. Opt. Soc. Am. A 10, 1875-1880 (1993).
-
(1993)
J. Opt. Soc. Am. A
, vol.10
, pp. 1875-1880
-
-
Mendlovic, D.1
Ozaktas, H.M.2
-
2
-
-
0027652515
-
Fractional Fourier transforms and their optical implementation: II
-
H. M. Ozaktas and D. Mendlovic, “Fractional Fourier transforms and their optical implementation: II,” J. Opt. Soc. Am. A 10, 2522-2531 (1993).
-
(1993)
J. Opt. Soc. Am. A
, vol.10
, pp. 2522-2531
-
-
Ozaktas, H.M.1
Mendlovic, D.2
-
3
-
-
77957689582
-
On Namiass fractional Fourier transform,”
-
A. C. McBride and F. H. Kerr, “On Namias’s fractional Fourier transform,” J. Appl. Math. 39, 159-175 (1987).
-
(1987)
J. Appl. Math.
, vol.39
, pp. 159-175
-
-
McBride, A.C.1
Kerr, F.H.2
-
4
-
-
77958407025
-
The fractional Fourier transform and its application in quantum mechanics
-
V. Namias, “The fractional Fourier transform and its application in quantum mechanics,” J. Inst. Math. Its Appl. 25, 241-265 (1980).
-
(1980)
J. Inst. Math. Its Appl.
, vol.25
, pp. 241-265
-
-
Namias, V.1
-
5
-
-
0027682286
-
Image rotation, Wigner rotation, and the fractional Fourier transform
-
A. W. Lohmann, “Image rotation, Wigner rotation, and the fractional Fourier transform,” J. Opt. Soc. Am. A10,2181-2186 (1993).
-
(1993)
J. Opt. Soc. Am.
, vol.A10
, pp. 2181-2186
-
-
Lohmann, A.W.1
-
6
-
-
0028509784
-
Graded-index fibers, Wigner distribution functions, and the fractional Fourier transform
-
D. Mendlovic, H. Ozaktas, and A. W. Lohmann, “Graded-index fibers, Wigner distribution functions, and the fractional Fourier transform,” Appl. Opt. 33, 6188-6193 (1994).
-
(1994)
Appl. Opt.
, vol.33
, pp. 6188-6193
-
-
Mendlovic, D.1
Ozaktas, H.2
Lohmann, A.W.3
-
7
-
-
0028382656
-
Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms
-
H. M. Ozaktas, B. Barshan, D. Mendlovic, and L. Onural, “Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms,” J. Opt. Soc. Am. A 11, 547-559 (1994).
-
(1994)
J. Opt. Soc. Am. A
, vol.11
, pp. 547-559
-
-
Ozaktas, H.M.1
Barshan, B.2
Mendlovic, D.3
Onural, L.4
-
8
-
-
0029230951
-
Fractional correlation
-
D. Mendlovic, H. M. Ozaktas, and A. W. Lohmann, “Fractional correlation,” Appl. Opt. 34, 303-309 (1995).
-
(1995)
Appl. Opt.
, vol.34
, pp. 303-309
-
-
Mendlovic, D.1
Ozaktas, H.M.2
Lohmann, A.W.3
-
9
-
-
84975542033
-
Anamorphic fractional Fourier transforming optical implementation and applications
-
D. Mendlovic, Y. Bitran, R. G. Dorsch, C. Ferreira, J. Garcia, and H. M. Ozaktas, “Anamorphic fractional Fourier transforming optical implementation and applications,” Appl. Opt. 34, 7451-7456 (1995).
-
(1995)
Appl. Opt.
, vol.34
, pp. 7451-7456
-
-
Mendlovic, D.1
Bitran, Y.2
Dorsch, R.G.3
Ferreira, C.4
Garcia, J.5
Ozaktas, H.M.6
-
11
-
-
0028515765
-
Fresnel diffraction and the fractional Fourier transform
-
P. Pellat-Finet, “Fresnel diffraction and the fractional Fourier transform,” Opt. Lett. 19, 1388-1390 (1994).
-
(1994)
Opt. Lett.
, vol.19
, pp. 1388-1390
-
-
Pellat-Finet, P.1
-
12
-
-
0028531566
-
Fractional Fourier transforms and imaging
-
L. M. Bernardo and O. D. D. Soares, “Fractional Fourier transforms and imaging,” J. Opt. Soc. Am. A 11, 2622-2626 (1994).
-
(1994)
J. Opt. Soc. Am. A
, vol.11
, pp. 2622-2626
-
-
Bernardo, L.M.1
Soares, O.D.D.2
-
13
-
-
27644491636
-
Root and power transformations in optics
-
J. Shamir and N. Cohen, “Root and power transformations in optics,” J. Opt. Soc. Am. A 12, 2415-2423 (1995).
-
(1995)
J. Opt. Soc. Am. A
, vol.12
, pp. 2415-2423
-
-
Shamir, J.1
Cohen, N.2
-
15
-
-
84968470212
-
An algorithm for the machine calculation of a complex Fourier series
-
J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of a complex Fourier series,” Math. Computat. 19, 297-301 (1965).
-
(1965)
Math. Computat.
, vol.19
, pp. 297-301
-
-
Cooley, J.W.1
Tukey, J.W.2
|