-
4
-
-
85037919218
-
-
Matrix-vector multiplies—the central operations in iterative solution methods—scale at best as (Formula presented) as compared to N for sparse matrices, where N is the dimension of the matrices.
-
Matrix-vector multiplies—the central operations in iterative solution methods—scale at best as (Formula presented) as compared to N for sparse matrices, where N is the dimension of the matrices.
-
-
-
-
6
-
-
0001172461
-
-
Phys. Rev. BK. Laasonen, R. Car, C. Lee, and D. Vanderbilt, 43, 6796 (1991).
-
(1991)
Phys. Rev. B
, vol.43
, pp. 6796
-
-
Laasonen, K.1
Car, R.2
Lee, C.3
Vanderbilt, D.4
-
7
-
-
0000824211
-
-
A.M. Rappe, K.M. Rabe, E. Kaxiras, and J.D. Joannopoulos, Phys. Rev. B 41, 1227 (1990).
-
(1990)
Phys. Rev. B
, vol.41
, pp. 1227
-
-
Rappe, A.M.1
Rabe, K.M.2
Kaxiras, E.3
Joannopoulos, J.D.4
-
8
-
-
0001139472
-
-
J.S. Lin, A. Qteish, M.C. Payne, and V. Heine, Phys. Rev. B 47, 4174 (1993).
-
(1993)
Phys. Rev. B
, vol.47
, pp. 4174
-
-
Lin, J.S.1
Qteish, A.2
Payne, M.C.3
Heine, V.4
-
12
-
-
0000683658
-
-
A. Devenyi, K. Cho, T.A. Arias, and J.D. Joannopoulos, Phys. Rev. B 49, 13 373 (1994).
-
(1994)
Phys. Rev. B
, vol.49
, pp. 13 373
-
-
Devenyi, A.1
Cho, K.2
Arias, T.A.3
Joannopoulos, J.D.4
-
17
-
-
0001360121
-
-
J.R. Chelikowsky, N. Troullier, K. Wu, and Y. Saad, Phys. Rev. B 50, 11 355 (1994);
-
(1994)
Phys. Rev. B
, vol.50
, pp. 11 355
-
-
Chelikowsky, J.R.1
Troullier, N.2
Wu, K.3
Saad, Y.4
-
21
-
-
0001255143
-
-
J. Bernholc, E.L. Briggs, D.J. Sullivan, C.J. Brabec, M. Buongiorno Nardelli, K. Rapcewicz, C. Roland, and M. Wensell, Int. J. Quantum Chem. 65, 531 (1997).
-
(1997)
Int. J. Quantum Chem.
, vol.65
, pp. 531
-
-
Bernholc, J.1
Briggs, E.L.2
Sullivan, D.J.3
Brabec, C.J.4
Buongiorno Nardelli, M.5
Rapcewicz, K.6
Roland, C.7
Wensell, M.8
-
31
-
-
85037916931
-
-
K.-J. Bathe, Finite Element Procedures (Prentice Hall, Englewood Cliffs, NJ, 1996).
-
K.-J. Bathe, Finite Element Procedures (Prentice Hall, Englewood Cliffs, NJ, 1996).
-
-
-
-
33
-
-
0004094896
-
-
Cambridge University Press, Cambridge
-
K. Eriksson, D. Estep, P. Hansbo, and C. Johnson, Computational Differential Equations (Cambridge University Press, Cambridge, 1996).
-
(1996)
Computational Differential Equations
-
-
Eriksson, K.1
Estep, D.2
Hansbo, P.3
Johnson, C.4
-
43
-
-
85037911988
-
-
See, e.g., Ref. 16
-
See, e.g., Ref. 16.
-
-
-
-
45
-
-
12044256405
-
-
K. Cho, T.A. Arias, J.D. Joannopoulos, and P.K. Lam, Phys. Rev. Lett. 71, 1808 (1993).
-
(1993)
Phys. Rev. Lett.
, vol.71
, pp. 1808
-
-
Cho, K.1
Arias, T.A.2
Joannopoulos, J.D.3
Lam, P.K.4
-
49
-
-
85037883588
-
-
Ref. 16, Chaps. 5 and 13. The details of the additional step of piecing together across the domain boundary then follow straightforwardly from Sec. II. For details see, e.g., Ref. 21, Chap. 11;
-
For details see, e.g., Ref. 21, Chap. 11;Ref. 16, Chaps. 5 and 13. The details of the additional step of piecing together across the domain boundary then follow straightforwardly from Sec. II.
-
-
-
-
50
-
-
85037903232
-
-
A polynomial basis which is complete to order n spans the space of polynomials of order n
-
A polynomial basis which is complete to order n spans the space of polynomials of order n.
-
-
-
-
51
-
-
85037889415
-
-
A function is of class (Formula presented) if the function and its first n derivatives are continuous.
-
A function is of class (Formula presented) if the function and its first n derivatives are continuous.
-
-
-
-
52
-
-
85037876172
-
-
We assume that (Formula presented) is sufficiently well behaved to keep the integrals well defined. For details regarding the relevant function spaces, see, e.g., Refs. 19 and 21
-
We assume that (Formula presented) is sufficiently well behaved to keep the integrals well defined. For details regarding the relevant function spaces, see, e.g., Refs. 19 and 21.
-
-
-
-
53
-
-
85037898768
-
-
See e.g., Ref. 16, p. 426.
-
See e.g., Ref. 16, p. 426.
-
-
-
-
56
-
-
85037911119
-
-
See, e.g., Finite Element Handbook, edited by H. Kardestuncer et al. (McGraw-Hill, New York, 1987), p. 2.126.
-
See, e.g., Finite Element Handbook, edited by H. Kardestuncer et al. (McGraw-Hill, New York, 1987), p. 2.126.
-
-
-
-
57
-
-
85037890817
-
-
This is among the most common methods of generating FE bases. For details, see, e.g., Ref. 16, Chaps. 8 and 13.
-
This is among the most common methods of generating FE bases. For details, see, e.g., Ref. 16, Chaps. 8 and 13.
-
-
-
|