-
5
-
-
0001559093
-
-
See, e.g.
-
See, e.g., D. M. Villeneuve, M. Yu. Ivanov, and P. B. Corkum, Phys. Rev. A 54, 736 (1996).
-
(1996)
Phys. Rev. a
, vol.54
, pp. 736
-
-
Villeneuve, D.M.1
Yu., I.M.2
Corkum, P.B.3
-
7
-
-
0000251731
-
-
Wing-Ki Liu, Binruo Wu, and Jian-Min Yuan, Phys. Rev. Lett. 75, 1292 (1995), and references therein.
-
(1995)
Phys. Rev. Lett.
, vol.75
, pp. 1292
-
-
Wing-Ki, L.1
Binruo, W.2
Jian-Min, Y.3
-
9
-
-
4243339108
-
-
See, e.g.
-
See, e.g., E. Charron, A. Giusti-Suzor, and F. H. Mies, Phys. Rev. Lett. 75, 2815 (1995).
-
(1995)
Phys. Rev. Lett.
, vol.75
, pp. 2815
-
-
Charron, E.1
Giusti-Suzor, A.2
Mies, F.H.3
-
11
-
-
0000172626
-
-
S. Chelkowski, T. Zuo, O. Atabek, and A. D. Bandrauk, Phys. Rev. A 52, 2977 (1995);
-
(1995)
Phys. Rev. a
, vol.52
, pp. 2977
-
-
Chelkowski, S.1
Zuo, T.2
Atabek, O.3
Bandrauk, A.D.4
-
12
-
-
3343020486
-
-
S. Chelkowski, A. Conjusteau, T. Zuo, and A. D. Bandrauk, 54, 3235 (1996).
-
(1996)
Phys. Rev. a
, vol.54
, pp. 3235
-
-
Chelkowski, S.1
Conjusteau, A.2
Zuo, T.3
Bandrauk, A.D.4
-
17
-
-
0000333026
-
-
F. A. Ilkov, T. D. G. Walsh, S. Turgeon, and S. L. Chin, Phys. Rev. A 51, R2695 (1995);
-
(1995)
Phys. Rev. a
, vol.51
, pp. 2695
-
-
Ilkov, F.A.1
Walsh, T.D.G.2
Turgeon, S.3
Chin, S.L.4
-
18
-
-
19044389499
-
-
F. A. Ilkov, S. Turgeon, T. D. G. Walsh, and S. L. Chin, Chem. Phys. Lett. 247, 1 (1995).
-
(1995)
Chem. Phys. Lett.
, vol.247
, pp. 1
-
-
Ilkov, F.A.1
Turgeon, S.2
Walsh, T.D.G.3
Chin, S.L.4
-
20
-
-
0003777488
-
-
Pergamon, Oxford
-
L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Nonrelativistic Theory, 3rd ed. (Pergamon, Oxford, 1977).
-
(1977)
Quantum Mechanics, Nonrelativistic Theory, 3rd Ed.
-
-
Landau, L.D.1
Lifshitz, E.M.2
-
21
-
-
0030126484
-
-
B. J. Schwartz, E. R. Bittner, O. V. Prezhdo, and P. J. Rossky, J. Chem. Phys. 104, 5942 (1996);
-
(1996)
J. Chem. Phys.
, vol.104
, pp. 5942
-
-
Schwartz, B.J.1
Bittner, E.R.2
Prezhdo, O.V.3
Rossky, P.J.4
-
25
-
-
21944448342
-
-
note
-
†, a) and the associated position and momentum operators (X, P). One next exploits the fact that the Heisenberg equations of motion for (X, P) have a well defined classical analogue, namely, Hamilton's equations. Thus, both the quantum degrees of freedom described by (X,P) and the classical degrees of freedom described by (x, p) have equations of motion of the same form, and are on equal footing. Practical numerical implementations are launched from this point. These authors point out that the surface hopping method and their classical mapping approach suffer from different fundamental problems arising from the imposition of classical descriptions in different frameworks. At the time of writing, no formal comparative analysis or comparison of numerical predictions for a given system had been carried out. Furthermore, the development of Ref. 18 is confined to field-free, time-independent systems.
-
-
-
|