메뉴 건너뛰기




Volumn 103, Issue 15, 1999, Pages 2561-2571

Cluster Ion Thermodynamic Properties: The Liquid Drop Model Revisited

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0000156799     PISSN: 10895639     EISSN: None     Source Type: Journal    
DOI: 10.1021/jp983550g     Document Type: Article
Times cited : (24)

References (83)
  • 6
  • 7
    • 0039025607 scopus 로고
    • Dzidic, I.; Kebarle, P. J. Phys. Chem. 1970, 74, 1466. Kebarle, P. Annu. Rev. Phys. Chem. 1977, 28, 445.
    • (1977) Annu. Rev. Phys. Chem. , vol.28 , pp. 445
    • Kebarle, P.1
  • 9
    • 0342581370 scopus 로고
    • See, for example, Kistenmacher, H.; Popkie, H.; Clementi, E. J. Chem. Phys. 1974, 61, 799. Perez, P.; Lee, W. K.; Prohofsky, E. W. J. Chem. Phys. 1983, 79, 388. Sung, S.-S.; Jordan, P. C. J. Chem. Phys. 1986, 85, 4045. Lin, S.; Jordan, P. C. J. Chem. Phys. 1988, 89, 7492. Perera, L.; Berkowitz, M. L. J. Chem. Phys. 1991, 95, 1954, 4236.
    • (1974) J. Chem. Phys. , vol.61 , pp. 799
    • Kistenmacher, H.1    Popkie, H.2    Clementi, E.3
  • 10
    • 0000139976 scopus 로고
    • See, for example, Kistenmacher, H.; Popkie, H.; Clementi, E. J. Chem. Phys. 1974, 61, 799. Perez, P.; Lee, W. K.; Prohofsky, E. W. J. Chem. Phys. 1983, 79, 388. Sung, S.-S.; Jordan, P. C. J. Chem. Phys. 1986, 85, 4045. Lin, S.; Jordan, P. C. J. Chem. Phys. 1988, 89, 7492. Perera, L.; Berkowitz, M. L. J. Chem. Phys. 1991, 95, 1954, 4236.
    • (1983) J. Chem. Phys. , vol.79 , pp. 388
    • Perez, P.1    Lee, W.K.2    Prohofsky, E.W.3
  • 11
    • 36549102444 scopus 로고
    • See, for example, Kistenmacher, H.; Popkie, H.; Clementi, E. J. Chem. Phys. 1974, 61, 799. Perez, P.; Lee, W. K.; Prohofsky, E. W. J. Chem. Phys. 1983, 79, 388. Sung, S.-S.; Jordan, P. C. J. Chem. Phys. 1986, 85, 4045. Lin, S.; Jordan, P. C. J. Chem. Phys. 1988, 89, 7492. Perera, L.; Berkowitz, M. L. J. Chem. Phys. 1991, 95, 1954, 4236.
    • (1986) J. Chem. Phys. , vol.85 , pp. 4045
    • Sung, S.-S.1    Jordan, P.C.2
  • 12
    • 0001372109 scopus 로고
    • See, for example, Kistenmacher, H.; Popkie, H.; Clementi, E. J. Chem. Phys. 1974, 61, 799. Perez, P.; Lee, W. K.; Prohofsky, E. W. J. Chem. Phys. 1983, 79, 388. Sung, S.-S.; Jordan, P. C. J. Chem. Phys. 1986, 85, 4045. Lin, S.; Jordan, P. C. J. Chem. Phys. 1988, 89, 7492. Perera, L.; Berkowitz, M. L. J. Chem. Phys. 1991, 95, 1954, 4236.
    • (1988) J. Chem. Phys. , vol.89 , pp. 7492
    • Lin, S.1    Jordan, P.C.2
  • 13
    • 22244482712 scopus 로고
    • See, for example, Kistenmacher, H.; Popkie, H.; Clementi, E. J. Chem. Phys. 1974, 61, 799. Perez, P.; Lee, W. K.; Prohofsky, E. W. J. Chem. Phys. 1983, 79, 388. Sung, S.-S.; Jordan, P. C. J. Chem. Phys. 1986, 85, 4045. Lin, S.; Jordan, P. C. J. Chem. Phys. 1988, 89, 7492. Perera, L.; Berkowitz, M. L. J. Chem. Phys. 1991, 95, 1954, 4236.
    • (1991) J. Chem. Phys. , vol.95 , pp. 1954
    • Perera, L.1    Berkowitz, M.L.2
  • 15
    • 0041913864 scopus 로고
    • See, for example, Perera, L.; Berkowitz, M. L. J. Chem. Phys. 1992, 96, 8268; 1993, 99, 4222. Sremaniak, L. S.; Perera, L.; Berkowitz, M. L. Chem. Phys. Lett. 1994, 218, 377. Dang, L. X.; Garrett, B. C. J. Chem. Phys. 1993, 99, 2972. Dang, L. X.; Smith, D. E. J. Chem. Phys. 1993, 99, 6950. Combariza, J. E.; Kestner, N. R.; Jortner, J. Chem. Phys. Lett. 1993, 203, 423; J. Chem. Phys. 1994, 100, 2851.
    • (1992) J. Chem. Phys. , vol.96 , pp. 8268
    • Perera, L.1    Berkowitz, M.L.2
  • 16
    • 33748570423 scopus 로고
    • See, for example, Perera, L.; Berkowitz, M. L. J. Chem. Phys. 1992, 96, 8268; 1993, 99, 4222. Sremaniak, L. S.; Perera, L.; Berkowitz, M. L. Chem. Phys. Lett. 1994, 218, 377. Dang, L. X.; Garrett, B. C. J. Chem. Phys. 1993, 99, 2972. Dang, L. X.; Smith, D. E. J. Chem. Phys. 1993, 99, 6950. Combariza, J. E.; Kestner, N. R.; Jortner, J. Chem. Phys. Lett. 1993, 203, 423; J. Chem. Phys. 1994, 100, 2851.
    • (1993) J. Chem. Phys. , vol.99 , pp. 4222
  • 17
    • 0001192688 scopus 로고
    • See, for example, Perera, L.; Berkowitz, M. L. J. Chem. Phys. 1992, 96, 8268; 1993, 99, 4222. Sremaniak, L. S.; Perera, L.; Berkowitz, M. L. Chem. Phys. Lett. 1994, 218, 377. Dang, L. X.; Garrett, B. C. J. Chem. Phys. 1993, 99, 2972. Dang, L. X.; Smith, D. E. J. Chem. Phys. 1993, 99, 6950. Combariza, J. E.; Kestner, N. R.; Jortner, J. Chem. Phys. Lett. 1993, 203, 423; J. Chem. Phys. 1994, 100, 2851.
    • (1994) Chem. Phys. Lett. , vol.218 , pp. 377
    • Sremaniak, L.S.1    Perera, L.2    Berkowitz, M.L.3
  • 18
    • 33646409342 scopus 로고
    • See, for example, Perera, L.; Berkowitz, M. L. J. Chem. Phys. 1992, 96, 8268; 1993, 99, 4222. Sremaniak, L. S.; Perera, L.; Berkowitz, M. L. Chem. Phys. Lett. 1994, 218, 377. Dang, L. X.; Garrett, B. C. J. Chem. Phys. 1993, 99, 2972. Dang, L. X.; Smith, D. E. J. Chem. Phys. 1993, 99, 6950. Combariza, J. E.; Kestner, N. R.; Jortner, J. Chem. Phys. Lett. 1993, 203, 423; J. Chem. Phys. 1994, 100, 2851.
    • (1993) J. Chem. Phys. , vol.99 , pp. 2972
    • Dang, L.X.1    Garrett, B.C.2
  • 19
    • 36449003438 scopus 로고
    • See, for example, Perera, L.; Berkowitz, M. L. J. Chem. Phys. 1992, 96, 8268; 1993, 99, 4222. Sremaniak, L. S.; Perera, L.; Berkowitz, M. L. Chem. Phys. Lett. 1994, 218, 377. Dang, L. X.; Garrett, B. C. J. Chem. Phys. 1993, 99, 2972. Dang, L. X.; Smith, D. E. J. Chem. Phys. 1993, 99, 6950. Combariza, J. E.; Kestner, N. R.; Jortner, J. Chem. Phys. Lett. 1993, 203, 423; J. Chem. Phys. 1994, 100, 2851.
    • (1993) J. Chem. Phys. , vol.99 , pp. 6950
    • Dang, L.X.1    Smith, D.E.2
  • 20
    • 0000014236 scopus 로고
    • See, for example, Perera, L.; Berkowitz, M. L. J. Chem. Phys. 1992, 96, 8268; 1993, 99, 4222. Sremaniak, L. S.; Perera, L.; Berkowitz, M. L. Chem. Phys. Lett. 1994, 218, 377. Dang, L. X.; Garrett, B. C. J. Chem. Phys. 1993, 99, 2972. Dang, L. X.; Smith, D. E. J. Chem. Phys. 1993, 99, 6950. Combariza, J. E.; Kestner, N. R.; Jortner, J. Chem. Phys. Lett. 1993, 203, 423; J. Chem. Phys. 1994, 100, 2851.
    • (1993) Chem. Phys. Lett. , vol.203 , pp. 423
    • Combariza, J.E.1    Kestner, N.R.2    Jortner, J.3
  • 21
    • 6244249374 scopus 로고
    • See, for example, Perera, L.; Berkowitz, M. L. J. Chem. Phys. 1992, 96, 8268; 1993, 99, 4222. Sremaniak, L. S.; Perera, L.; Berkowitz, M. L. Chem. Phys. Lett. 1994, 218, 377. Dang, L. X.; Garrett, B. C. J. Chem. Phys. 1993, 99, 2972. Dang, L. X.; Smith, D. E. J. Chem. Phys. 1993, 99, 6950. Combariza, J. E.; Kestner, N. R.; Jortner, J. Chem. Phys. Lett. 1993, 203, 423; J. Chem. Phys. 1994, 100, 2851.
    • (1994) J. Chem. Phys. , vol.100 , pp. 2851
  • 28
    • 0004255950 scopus 로고    scopus 로고
    • Bernstein, E. R., Ed.; Oxford University Press: New York
    • See, for example, Chemical Reactions in Clusters; Bernstein, E. R., Ed.; Oxford University Press: New York, 1996.
    • (1996) Chemical Reactions in Clusters
  • 33
    • 0000839877 scopus 로고    scopus 로고
    • Reference 31 and references therein
    • One might imagine, for example, a cluster version of the integral equation theories that are commonly used for bulk solvation problems. See, for example, the following. Richardi, J.; Fries, P. H.; Krienke, H. J. Chem. Phys. 1998, 108, 4079. Reference 31 and references therein.
    • (1998) J. Chem. Phys. , vol.108 , pp. 4079
    • Richardi, J.1    Fries, P.H.2    Krienke, H.3
  • 39
    • 85034153354 scopus 로고    scopus 로고
    • Note that solvent-solvent polarizability effects are implicitly included in the LD model via the use of an experimental solvent dielectric constant
    • Note that solvent-solvent polarizability effects are implicitly included in the LD model via the use of an experimental solvent dielectric constant.
  • 40
    • 85034135051 scopus 로고    scopus 로고
    • A possible route for including nonlinear effects of the ionic field and correcting for dielectric saturation in the vicinity of the ion would be to make the solvent dielectric constant distance-dependent, as was done in early bulk solvation studies. See, for example, ref 31 and references therein
    • A possible route for including nonlinear effects of the ionic field and correcting for dielectric saturation in the vicinity of the ion would be to make the solvent dielectric constant distance-dependent, as was done in early bulk solvation studies. See, for example, ref 31 and references therein.
  • 41
  • 46
    • 0003930168 scopus 로고
    • Wiley: New York
    • Marcus, Y. Ion Solvation; Wiley: New York, 1985. Marcus, Y. J. Chem. Soc., Faraday Trans. 1 1986, 82, 233; 1987, 83, 339.
    • (1985) Ion Solvation
    • Marcus, Y.1
  • 48
    • 14344278321 scopus 로고
    • Marcus, Y. Ion Solvation; Wiley: New York, 1985. Marcus, Y. J. Chem. Soc., Faraday Trans. 1 1986, 82, 233; 1987, 83, 339.
    • (1987) J. Chem. Soc., Faraday Trans. 1 , vol.83 , pp. 339
  • 49
    • 85034126343 scopus 로고    scopus 로고
    • - ion pairs for which the solvation free energy is the same with either choice of ion solvation data
    • - ion pairs for which the solvation free energy is the same with either choice of ion solvation data.
  • 51
    • 85034134259 scopus 로고    scopus 로고
    • note
    • As the temperature derivative of the free energy, the entropy is a more delicate and sensitive property to determine in general. Thus, it is difficult to produce both accurate free energies and enthalpies with the same continuum dielectric model. An investigation of the Born model [see ref 31] in fact suggests that the variation of the solvent dielectric constant with temperature is not sufficient to account for the difference between enthalpy and free energy and that the dominant contribution to this difference arises from the variation of the Born radius with temperature, which is not considered here.
  • 52
    • 0003996643 scopus 로고    scopus 로고
    • Wiley: New York
    • It should be pointed out that computer simulations are performed by us and others for isolated clusters, whereas the actual experimental measurements do involve clusters of various size in thermodynamic equilibrium with the solvent vapor. The proper definition of the physical cluster has been a long-standing issue in investigations of nucleation and capillarity phenomena, but it is now generally agreed that thermodynamic properties computed for isolated clusters - the only practical approach at this point - give an adequate representation of the properties of clusters in equilibrium with the solvent vapor under realistic experimental conditions. See, for example, Seinfeld, J. H.; Pandis, S. N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; Wiley: New York, 1998, p 569. Lee, J. K.; Barker, J. A.; Abraham, F. F. J. Chem. Phys. 1973, 58, 3166. Reiss, H.; Tabazadeh, A.; Talbot, J. J. Chem. Phys. 1990, 92, 1266. Weakliem, C. L.; Reiss, H. J. Phys. Chem. 1994, 98, 6408.
    • (1998) Atmospheric Chemistry and Physics: from Air Pollution to Climate Change , pp. 569
    • Seinfeld, J.H.1    Pandis, S.N.2
  • 53
    • 51149205329 scopus 로고
    • It should be pointed out that computer simulations are performed by us and others for isolated clusters, whereas the actual experimental measurements do involve clusters of various size in thermodynamic equilibrium with the solvent vapor. The proper definition of the physical cluster has been a long-standing issue in investigations of nucleation and capillarity phenomena, but it is now generally agreed that thermodynamic properties computed for isolated clusters - the only practical approach at this point - give an adequate representation of the properties of clusters in equilibrium with the solvent vapor under realistic experimental conditions. See, for example, Seinfeld, J. H.; Pandis, S. N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; Wiley: New York, 1998, p 569. Lee, J. K.; Barker, J. A.; Abraham, F. F. J. Chem. Phys. 1973, 58, 3166. Reiss, H.; Tabazadeh, A.; Talbot, J. J. Chem. Phys. 1990, 92, 1266. Weakliem, C. L.; Reiss, H. J. Phys. Chem. 1994, 98, 6408.
    • (1973) J. Chem. Phys. , vol.58 , pp. 3166
    • Lee, J.K.1    Barker, J.A.2    Abraham, F.F.3
  • 54
    • 0001280213 scopus 로고
    • It should be pointed out that computer simulations are performed by us and others for isolated clusters, whereas the actual experimental measurements do involve clusters of various size in thermodynamic equilibrium with the solvent vapor. The proper definition of the physical cluster has been a long-standing issue in investigations of nucleation and capillarity phenomena, but it is now generally agreed that thermodynamic properties computed for isolated clusters - the only practical approach at this point - give an adequate representation of the properties of clusters in equilibrium with the solvent vapor under realistic experimental conditions. See, for example, Seinfeld, J. H.; Pandis, S. N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; Wiley: New York, 1998, p 569. Lee, J. K.; Barker, J. A.; Abraham, F. F. J. Chem. Phys. 1973, 58, 3166. Reiss, H.; Tabazadeh, A.; Talbot, J. J. Chem. Phys. 1990, 92, 1266. Weakliem, C. L.; Reiss, H. J. Phys. Chem. 1994, 98, 6408.
    • (1990) J. Chem. Phys. , vol.92 , pp. 1266
    • Reiss, H.1    Tabazadeh, A.2    Talbot, J.3
  • 55
    • 0000477419 scopus 로고
    • It should be pointed out that computer simulations are performed by us and others for isolated clusters, whereas the actual experimental measurements do involve clusters of various size in thermodynamic equilibrium with the solvent vapor. The proper definition of the physical cluster has been a long-standing issue in investigations of nucleation and capillarity phenomena, but it is now generally agreed that thermodynamic properties computed for isolated clusters - the only practical approach at this point - give an adequate representation of the properties of clusters in equilibrium with the solvent vapor under realistic experimental conditions. See, for example, Seinfeld, J. H.; Pandis, S. N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; Wiley: New York, 1998, p 569. Lee, J. K.; Barker, J. A.; Abraham, F. F. J. Chem. Phys. 1973, 58, 3166. Reiss, H.; Tabazadeh, A.; Talbot, J. J. Chem. Phys. 1990, 92, 1266. Weakliem, C. L.; Reiss, H. J. Phys. Chem. 1994, 98, 6408.
    • (1994) J. Phys. Chem. , vol.98 , pp. 6408
    • Weakliem, C.L.1    Reiss, H.2
  • 58
    • 33751157596 scopus 로고
    • Aqvist, J. J. Phys. Chem. 1990, 94, 8021; 1994, 98, 8253.
    • (1994) J. Phys. Chem. , vol.98 , pp. 8253
  • 59
    • 0021376732 scopus 로고
    • The resulting Lennard-Jones parameters are ε = 0.3 kcal/mol and σ = 4.0 Å
    • In addition - and it will be important in the following - the TIP3P model complemented by our ion - water potentials predicts that surface ion structures are favored over interior ion configurations for iodide ion - water clusters at room temperature, which proves an important requirement of reliable model potentials in studies of these clusters and was at the center of an earlier controversy whether simple pairwise additive potentials could reproduce this feature of halide-water clusters [see ref 9]. The iodide - water interaction potentials used in this work are of the OPLS form, and the parameters were chosen to reproduce the experimental interaction energy and the calculated HF/3-21+G geometry of the ion - water complex, as was done for fluoride and chloride in the following reference. Chandrasekhar, J.; Spellmeyer, D. C.; Jorgensen, W. L. J. Am. Chem. Soc. 1984, 106, 903. The resulting Lennard-Jones parameters are ε = 0.3 kcal/mol and σ = 4.0 Å.
    • (1984) J. Am. Chem. Soc. , vol.106 , pp. 903
    • Chandrasekhar, J.1    Spellmeyer, D.C.2    Jorgensen, W.L.3
  • 62
    • 85034149738 scopus 로고    scopus 로고
    • note
    • It should be noted that the ion, not simply its charge, is being annihilated in our Monte Carlo simulations; i.e. both the electrostatic and repulsion - dispersion parts of the solute - solvent interactions are being gradually "turned off", and thus, we are calculating the full solvation free energy of the ion, including the work to transfer the ion into the water cluster, and not only the free energy associated with "charging" the ion, as is customarily done [see ref 59]. However, we expect the work associated with the ion transfer to the water cluster (or the cavity formation) to be negligible [see ref 59]. This assists but does not itself guarantee the important feature that the cluster solvation free energies from our Monte Carlo simulations agree well with the LD model predictions within the statistical uncertainties of the simulations (continuum dielectric-based models only account for the free energy of "charging" the ion).
  • 63
    • 85034154995 scopus 로고    scopus 로고
    • note
    • The random-walk Metropolis Monte Carlo method [e.g., ref 44] is employed here. A new configuration is generated by randomly translating one water molecule in all three Cartesian directions and rotating the water molecule around its Euler angles. The range for translational and rotational displacements is chosen to yield typical configuration acceptance ratios of ∼50%.
  • 67
    • 85034129985 scopus 로고    scopus 로고
    • note
    • Alternatively, if one compares the cluster solvation enthalpies calculated with the DS model and displayed in the top panel of Figure 3 to the asymptotic limit predicted by the model (-106 kcal/mol), one still concludes that the cluster solvation enthalpy is slow to converge to the bulk limit.
  • 68
    • 85034128860 scopus 로고    scopus 로고
    • See, for example, ref 56
    • See, for example, ref 56.
  • 69
    • 85034154815 scopus 로고    scopus 로고
    • note
    • solv. In the macroscopic continuum view, the contribution of the former (the interaction free energy) is negative and equal in magnitude to twice the value of the latter positive contribution (the "self free energy of the solvent). Clearly, a LD model does not do justice to the microscopic aspects of this competition.
  • 70
    • 85034137262 scopus 로고    scopus 로고
    • note
    • 55 but this may depend strongly on the parametrization of the thermodynamic properties for forming the neutral water clusters.
  • 74
    • 85034134207 scopus 로고    scopus 로고
    • We note here that iodide ion clusters may behave differently and exhibit different structural properties, depending on the solvent, and this solvent dependence will prove to play an important role for NaI ion pairs in clusters [see ref 62]
    • We note here that iodide ion clusters may behave differently and exhibit different structural properties, depending on the solvent, and this solvent dependence will prove to play an important role for NaI ion pairs in clusters [see ref 62].
  • 76
    • 0031034836 scopus 로고    scopus 로고
    • Tuckerman, M. E.; Ungar, P. J., von Rosenvinge, T.; Klein, M. L. J. Phys. Chem. 1996, 100, 12878. Tuckerman, M. E.; Marx, D.; Klein, M. L.; Parrinello, M. Science 1997, 275, 817-820.
    • (1997) Science , vol.275 , pp. 817-820
    • Tuckerman, M.E.1    Marx, D.2    Klein, M.L.3    Parrinello, M.4
  • 77
    • 33749223814 scopus 로고
    • See, for example, Rashin, A. A.; Honig, B. J. Phys. Chem. 1985, 89, 5588. Jayaram, B.; Fine, R.; Sharp, K.; Honig, B. J. Phys. Chem. 1989, 93, 4320.
    • (1985) J. Phys. Chem. , vol.89 , pp. 5588
    • Rashin, A.A.1    Honig, B.2
  • 79
    • 0011029243 scopus 로고
    • The very fact that continuum models predict at least the right trends for a variety of more complex solute properties in bulk solution [e.g., Morita, T.; Ladanyi, B. M.; Hynes, J. T. J. Phys. Chem. 1989, 93, 1386] is encouraging in that respect.
    • (1989) J. Phys. Chem. , vol.93 , pp. 1386
    • Morita, T.1    Ladanyi, B.M.2    Hynes, J.T.3
  • 80
    • 0001570192 scopus 로고    scopus 로고
    • It is interesting to note that the success of simple dielectric models in describing cluster ion solvation thermodynamic properties over a wide range of cluster sizes suggests that one could evaluate bulk solvation properties from cluster simulations using simple dielectric corrections, at least for simple ions. Cluster simulations do not require the use of periodic boundary conditions, the exact implementation of which remains to date controversial [Aqvist, J.; Hansson, T. J. Phys. Chem. B 1998, 102, 3837. Hummer, G.; Pratt, L. R.; Garcia, A. E.; Garde, S.; Berne, B. J.; Rick, S. W. J. Phys. Chem. B 1998, 102, 3841. Ashbaugh, H. S.; Sakane, S.; Wood, R. H. J. Phys. Chem. B 1998, 102, 3844].
    • (1998) J. Phys. Chem. B , vol.102 , pp. 3837
    • Aqvist, J.1    Hansson, T.2
  • 81
    • 0001286784 scopus 로고    scopus 로고
    • It is interesting to note that the success of simple dielectric models in describing cluster ion solvation thermodynamic properties over a wide range of cluster sizes suggests that one could evaluate bulk solvation properties from cluster simulations using simple dielectric corrections, at least for simple ions. Cluster simulations do not require the use of periodic boundary conditions, the exact implementation of which remains to date controversial [Aqvist, J.; Hansson, T. J. Phys. Chem. B 1998, 102, 3837. Hummer, G.; Pratt, L. R.; Garcia, A. E.; Garde, S.; Berne, B. J.; Rick, S. W. J. Phys. Chem. B 1998, 102, 3841. Ashbaugh, H. S.; Sakane, S.; Wood, R. H. J. Phys. Chem. B 1998, 102, 3844].
    • (1998) J. Phys. Chem. B , vol.102 , pp. 3841
    • Hummer, G.1    Pratt, L.R.2    Garcia, A.E.3    Garde, S.4    Berne, B.J.5    Rick, S.W.6
  • 82
    • 0001286785 scopus 로고    scopus 로고
    • It is interesting to note that the success of simple dielectric models in describing cluster ion solvation thermodynamic properties over a wide range of cluster sizes suggests that one could evaluate bulk solvation properties from cluster simulations using simple dielectric corrections, at least for simple ions. Cluster simulations do not require the use of periodic boundary conditions, the exact implementation of which remains to date controversial [Aqvist, J.; Hansson, T. J. Phys. Chem. B 1998, 102, 3837. Hummer, G.; Pratt, L. R.; Garcia, A. E.; Garde, S.; Berne, B. J.; Rick, S. W. J. Phys. Chem. B 1998, 102, 3841. Ashbaugh, H. S.; Sakane, S.; Wood, R. H. J. Phys. Chem. B 1998, 102, 3844].
    • (1998) J. Phys. Chem. B , vol.102 , pp. 3844
    • Ashbaugh, H.S.1    Sakane, S.2    Wood, R.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.