-
1
-
-
4544248296
-
-
A. De Koster, A. P. Jansen, R. A. van Santen, and J. J. C. Gerlings, Faraday Discuss. Chem. Soc. 87, 263 (1989).
-
(1989)
Faraday Discuss. Chem. Soc.
, vol.87
, pp. 263
-
-
De Koster, A.1
Jansen, A.P.2
Van Santen, R.A.3
Gerlings, J.J.C.4
-
4
-
-
26444556462
-
-
edited by D. A. King and D. P. Woodruff Elsevier, Amsterdam
-
J. C. Campazona, in The Chemical Properties of Solid Surfaces and Heterogenous Catalysis, edited by D. A. King and D. P. Woodruff (Elsevier, Amsterdam, 1990), Vol. 3, Part A.
-
(1990)
The Chemical Properties of Solid Surfaces and Heterogenous Catalysis
, vol.3
, Issue.PART A
-
-
Campazona, J.C.1
-
9
-
-
0000348196
-
-
J. Braun, A. P. Graham, F. Hofmann, W. Silvestri, J. P. Toennies, and G. Witte, J. Chem. Phys. 105, 3258 (1996).
-
(1996)
J. Chem. Phys.
, vol.105
, pp. 3258
-
-
Braun, J.1
Graham, A.P.2
Hofmann, F.3
Silvestri, W.4
Toennies, J.P.5
Witte, G.6
-
12
-
-
0003499263
-
-
edited by R. F. Hester, R. H. J. Clark Heyden, London
-
T. T. Nguyen and N. Sheppard, in Advances in IR and Raman Spectroscopy, edited by R. F. Hester, R. H. J. Clark (Heyden, London, 1978), Vol. 5.
-
(1978)
Advances in IR and Raman Spectroscopy
, vol.5
-
-
Nguyen, T.T.1
Sheppard, N.2
-
18
-
-
85034506959
-
-
note
-
The angle between the macroscopic surface plane and the (111) terrace is 19.5° for a Cu (211) surface. On the basis of the dipole scattering selection rules, the EELS analysis does not allow to identify, if the CO axis stands perpendicular to the terrace or to the macroscopic surface plane.
-
-
-
-
19
-
-
85034519136
-
-
note
-
-1) to the stretch vibration of CO adsorbed in on-top sites. In our experiment, the coverage of 0.5 ML has been identified with the maximum intensity of this energy loss, which coincides with the appearance of an additional loss reflecting the population of bridge sites.
-
-
-
-
20
-
-
85034503024
-
-
note
-
We note that the frustrated translation and rotation are as well dipole active modes, which we did not observe in our spectra, however. The detection of the former (Ref. 8) is certainly impossible with the present resolution of our spectrometer. The associated loss of the latter, whose frequency is, in comparison with other systems, expected to lie in the range confined between 30 and 35 meV, is presumably burned in the feet of the elastic and the peak at 43.9 meV (see Fig. 2).
-
-
-
-
21
-
-
0000985135
-
-
R. Raval, S. F. Parker, M. E. Pemble, P. Hollins, J. Pritchard, and M. A. Chesters, Surf. Sci. 203, 353 (1988).
-
(1988)
Surf. Sci.
, vol.203
, pp. 353
-
-
Raval, R.1
Parker, S.F.2
Pemble, M.E.3
Hollins, P.4
Pritchard, J.5
Chesters, M.A.6
-
22
-
-
5844286198
-
-
N. D. Shinn, M. Trenary, M. R. McClellan, and T. R. McFeely, J. Chem. Phys. 75, 3142 (1981).
-
(1981)
J. Chem. Phys.
, vol.75
, pp. 3142
-
-
Shinn, N.D.1
Trenary, M.2
McClellan, M.R.3
McFeely, T.R.4
-
24
-
-
0028293377
-
-
Ph. Hofmann, K.-M. Schindler, S. Bao, A. M. Bradshaw, and D. P. Woodruff, Nature (London) 368, 131 (1994).
-
(1994)
Nature (London)
, vol.368
, pp. 131
-
-
Hofmann, Ph.1
Schindler, K.-M.2
Bao, S.3
Bradshaw, A.M.4
Woodruff, D.P.5
|