메뉴 건너뛰기




Volumn 80, Issue 2, 1998, Pages 239-252

A combined relaxation method for variational inequalities with nonlinear constraints

Author keywords

Combined relaxation method; Nonlinear constraints; Set valued mapping; Variational inequalities

Indexed keywords


EID: 0000134798     PISSN: 00255610     EISSN: None     Source Type: Journal    
DOI: 10.1007/BF01581728     Document Type: Article
Times cited : (37)

References (21)
  • 4
    • 0040215221 scopus 로고
    • On weak convergence of an ergodic iteration for the solution of variational inequalities for monotone operators in Hilbert space
    • R. Bruck, On weak convergence of an ergodic iteration for the solution of variational inequalities for monotone operators in Hilbert space, Journal of Mathematical Analysis and Applications 61 (1977) 159-164.
    • (1977) Journal of Mathematical Analysis and Applications , vol.61 , pp. 159-164
    • Bruck, R.1
  • 6
    • 0003743825 scopus 로고
    • New York, English translation
    • V.F. Dem'yanov and L.V. Vasil'yev, Nondifferentiable Optimization (Nauka, Moscow, 1981); Optimization Software (New York, 1985) [English translation].
    • (1985) Optimization Software
  • 8
    • 0022717559 scopus 로고
    • A relaxed projection method for variational inequality
    • M. Fukushima, A relaxed projection method for variational inequality, Mathematical Programming 35 (1986) 58-70.
    • (1986) Mathematical Programming , vol.35 , pp. 58-70
    • Fukushima, M.1
  • 9
    • 0344704362 scopus 로고
    • Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications
    • P.T. Harker and J.-S. Pang, Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications, Mathematical Programming 48 (1990) 161-220.
    • (1990) Mathematical Programming , vol.48 , pp. 161-220
    • Harker, P.T.1    Pang, J.-S.2
  • 10
    • 0001797763 scopus 로고
    • Generalized monotonicity in nonsmooth analysis
    • S. Komlósi, T. Rapcsák and S. Schaible, eds., Springer, Berlin
    • S. Komlósi, Generalized monotonicity in nonsmooth analysis, in: S. Komlósi, T. Rapcsák and S. Schaible, eds., Generalized Convexity (Springer, Berlin, 1994) 263-275.
    • (1994) Generalized Convexity , pp. 263-275
    • Komlósi, S.1
  • 11
    • 0041003825 scopus 로고
    • A two-level subgradient method for finding saddle points of convex-concave functions
    • I.V. Konnov, A two-level subgradient method for finding saddle points of convex-concave functions, Computational Mathematics and Mathematical Physics 33 (1993) 453-459.
    • (1993) Computational Mathematics and Mathematical Physics , vol.33 , pp. 453-459
    • Konnov, I.V.1
  • 17
    • 38249028742 scopus 로고
    • Browder-Hartmann-Stampacchia variational inequalities for multi-valued monotone operators
    • M.H. Shih and K.K. Tan, Browder-Hartmann-Stampacchia variational inequalities for multi-valued monotone operators, Journal of Mathematical Analysis and Applications 134 (1988) 431-440.
    • (1988) Journal of Mathematical Analysis and Applications , vol.134 , pp. 431-440
    • Shih, M.H.1    Tan, K.K.2
  • 20
    • 0016621235 scopus 로고
    • A method of conjugate subgradients for minimizing nondifferentiable functions
    • M.L. Balinski and P. Wolfe, eds.
    • P. Wolfe, A method of conjugate subgradients for minimizing nondifferentiable functions, in: M.L. Balinski and P. Wolfe, eds., Nondifferentiable Optimization, Mathematical Programming Study 3 (1975) 145-173.
    • (1975) Nondifferentiable Optimization, Mathematical Programming Study , vol.3 , pp. 145-173
    • Wolfe, P.1
  • 21
    • 0028545469 scopus 로고
    • Multi-valued variational inequalities with K-pseudomonotone operators
    • J.C. Yao, Multi-valued variational inequalities with K-pseudomonotone operators, Journal of Optimization Theory and Applications 83 (1994) 391-403.
    • (1994) Journal of Optimization Theory and Applications , vol.83 , pp. 391-403
    • Yao, J.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.