-
1
-
-
0000799547
-
-
Axtell, E. A., III; Ozawa, T.; Kauzlarich, S.; Singh R. R. P. J. Solid State Chem. 1997, 134, 423.
-
(1997)
J. Solid State Chem.
, vol.134
, pp. 423
-
-
Axtell III, E.A.1
Ozawa, T.2
Kauzlarich, S.3
Singh, R.R.P.4
-
3
-
-
84944438397
-
-
(a) Wilson, J. A.; DiSalvo, F. J.; Mahajan, S. Adv. Phys. 1975, 24, 117.
-
(1975)
Adv. Phys.
, vol.24
, pp. 117
-
-
Wilson, J.A.1
DiSalvo, F.J.2
Mahajan, S.3
-
7
-
-
0004019066
-
Physics and Chemistry of Low-Dimensional Inorganic Conductors
-
Plenum: New York
-
(e) Physics and Chemistry of Low-Dimensional Inorganic Conductors; Greenblatt, M., Schlenker, C., Dumas, J., van Smaalen, S., Eds.; NATO-ASI Series B, Physics; Plenum: New York, 1996.
-
(1996)
NATO-ASI Series B, Physics
-
-
Greenblatt, M.1
Schlenker, C.2
Dumas, J.3
Van Smaalen, S.4
-
9
-
-
84891761335
-
-
Physics and Chemistry of Low-Dimensional Inorganic Conductors; Greenblatt, M., Schlenker, C., Dumas, J., van Smaalen, S., Eds.; Plenum: New York
-
(b) Canadell, E.; Whangbo, M.-H. In Physics and Chemistry of Low-Dimensional Inorganic Conductors; Greenblatt, M., Schlenker, C., Dumas, J., van Smaalen, S., Eds.; NATO-ASI Series B, Physics; Plenum: New York, 1996; p 271.
-
(1996)
NATO-ASI Series B, Physics
, pp. 271
-
-
Canadell, E.1
Whangbo, M.-H.2
-
10
-
-
0005185424
-
-
Physics and Chemistry of Low-Dimensional Inorganic Conductors; Greenblatt, M., Schlenker, C., Dumas, J., van Smaalen, S., Eds.; Plenum: New York
-
(c) Whangbo, M.-H.; Seo, D.-K.; Canadell, E. In Physics and Chemistry of Low-Dimensional Inorganic Conductors; Greenblatt, M., Schlenker, C., Dumas, J., van Smaalen, S., Eds.; NATO-ASI Series B, Physics; Plenum: New York, 1996; p 285.
-
(1996)
NATO-ASI Series B, Physics
, pp. 285
-
-
Whangbo, M.-H.1
Seo, D.-K.2
Canadell, E.3
-
13
-
-
0007851150
-
-
(a) Whangbo, M.-H.; Canadell, E.; Foury, P.; Pouget, J. P. Science 1991, 252, 96.
-
(1991)
Science
, vol.252
, pp. 96
-
-
Whangbo, M.-H.1
Canadell, E.2
Foury, P.3
Pouget, J.P.4
-
15
-
-
84891770507
-
-
note
-
Note that the exact value of the q vector depends on the relative position of the xz/yz band with respect to the other bands. In other words, the xz/yz band acts like an electron reservoir and the modulus of the q vector can depend on computational details. Model calculations suggest that, within the context of the present study, this dependence is not very important for reasonable changes in the exponents and parameters. Nevertheless, other computational techniques could lead to different answers concerning the positioning of this band.
-
-
-
-
16
-
-
84891812900
-
-
note
-
Note that this second mechanism could also be likely if the coupling between the 1D sets of interactions through the Sb p-orbitals was slightly underestimated in our calculations. In that case, the warping near Γ would increase (see the avoided crossing between two bands, one Ti-based and the other Sb-based, not far from Γ along the Γ → M direction and near the Fermi level) so that the nesting associated with the q and q′ vectors will deteriorate and the hidden nesting mechanism will become less likely.
-
-
-
|