-
1
-
-
0016767434
-
Light scattering by a spheroidal particle
-
S. Asano and G. Yamamoto, “Light scattering by a spheroidal particle,” Appl. Opt. 14, 29-49 (1975).
-
(1975)
Appl. Opt.
, vol.14
, pp. 29-49
-
-
Asano, S.1
Yamamoto, G.2
-
2
-
-
0018444220
-
Light scattering properties of spheroidal particles
-
S. Asano, “Light scattering properties of spheroidal particles,” Appl. Opt. 18, 712-723 (1979).
-
(1979)
Appl. Opt.
, vol.18
, pp. 712-723
-
-
Asano, S.1
-
3
-
-
0018997062
-
Light scattering by randomly oriented spheroidal particles
-
S. Asano and M. Sato, “Light scattering by randomly oriented spheroidal particles,” Appl. Opt. 19, 962-974 (1980).
-
(1980)
Appl. Opt.
, vol.19
, pp. 962-974
-
-
Asano, S.1
Sato, M.2
-
4
-
-
0041723278
-
Discussion of the boundary condition for electromagnetic scattering by spheroidal particles
-
Y. Han and Z. Wu, “Discussion of the boundary condition for electromagnetic scattering by spheroidal particles,” Acta Phys. Sin. 49, 57-60 (2000).
-
(2000)
Acta Phys. Si
, vol.49
, pp. 57-60
-
-
Han, Y.1
Wu, Z.2
-
5
-
-
0020717023
-
Electromagnetic plane wave scattering by a system of two parallel conducting prolate spheroids
-
B. P. Sinha and R. H. MacPhie, “Electromagnetic plane wave scattering by a system of two parallel conducting prolate spheroids,” IEEE Trans. Antennas Propag. 31, 294-304 (1983).
-
(1983)
IEEE Trans. Antennas Propag.
, vol.31
, pp. 294-304
-
-
Sinha, B.P.1
Macphie, R.H.2
-
6
-
-
0029275240
-
Electromagnetic plane wave scattering by a system of two uniformly lossy dielectric prolate spheroids in arbitrary orientation
-
S. Nag and B. P. Sinha, “Electromagnetic plane wave scattering by a system of two uniformly lossy dielectric prolate spheroids in arbitrary orientation,” IEEE Trans. Antennas Propag. 43, 322-327 (1995).
-
(1995)
IEEE Trans. Antennas Propag.
, vol.43
, pp. 322-327
-
-
Nag, S.1
Sinha, B.P.2
-
7
-
-
84975606803
-
Information content of the scattering matrix for spheroidal particles
-
T. G. Tsuei and P. W. Barber, “Information content of the scattering matrix for spheroidal particles,” Appl. Opt. 24, 2391-2396 (1985).
-
(1985)
Appl. Opt.
, vol.24
, pp. 2391-2396
-
-
Tsuei, T.G.1
Barber, P.W.2
-
8
-
-
0032553286
-
Scattering of electromagnetic waves by spheroidal particles: A novel approach exploiting the T matrix computed in spheroidal coordinates
-
F. M. Schulz, K. Stamnes, and J. J. Stamnes, “Scattering of electromagnetic waves by spheroidal particles: a novel approach exploiting the T matrix computed in spheroidal coordinates,” Appl. Opt. 37, 7875-7896 (1998).
-
(1998)
Appl. Opt.
, vol.37
, pp. 7875-7896
-
-
Schulz, F.M.1
Stamnes, K.2
Stamnes, J.J.3
-
9
-
-
0000311254
-
Internal and near-surface electromagnetic fields for a spheroidal particle with arbitrary illumination
-
J. P. Barton, “Internal and near-surface electromagnetic fields for a spheroidal particle with arbitrary illumination,” Appl. Opt. 34, 5542-5551 (1995).
-
(1995)
Appl. Opt.
, vol.34
, pp. 5542-5551
-
-
Barton, J.P.1
-
10
-
-
84975539014
-
Internal and near-surface electromagnetic fields for an absorbing spheroidal particle with arbitrary illumination
-
J. P. Barton, “Internal and near-surface electromagnetic fields for an absorbing spheroidal particle with arbitrary illumination,” Appl. Opt. 34, 8472-8473 (1995).
-
(1995)
Appl. Opt.
, vol.34
, pp. 8472-8473
-
-
Barton, J.P.1
-
11
-
-
0001658769
-
Validity of the localized approximation for arbitrary shaped beams in the generalized Lorenz-Mie theory for spheres
-
G. Gouesbet, “Validity of the localized approximation for arbitrary shaped beams in the generalized Lorenz-Mie theory for spheres,” J. Opt. Soc. Am. A 16, 1641-1650 (1999).
-
(1999)
J. Opt. Soc. Am. A
, vol.16
, pp. 1641-1650
-
-
Gouesbet, G.1
-
12
-
-
0023966464
-
A concise presentation of the generalized Lorenz-Mie theory for arbitrary location of the scatterer in an arbitrary incident profile
-
B. Maheu, G. Gouesbet, and G. Grehan, “A concise presentation of the generalized Lorenz-Mie theory for arbitrary location of the scatterer in an arbitrary incident profile,” J. Opt. (Paris) 19, 59-67 (1988).
-
(1988)
J. Opt. (Paris)
, vol.19
, pp. 59-67
-
-
Maheu, B.1
Gouesbet, G.2
Grehan, G.3
-
13
-
-
20444374897
-
Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation
-
G. Gouesbet, B. Maheu, and G. Grehan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427-1443 (1988).
-
(1988)
J. Opt. Soc. Am. A
, vol.5
, pp. 1427-1443
-
-
Gouesbet, G.1
Maheu, B.2
Grehan, G.3
-
14
-
-
0008191976
-
Computation of the beam-shape coefficients in the generalized Lorenz-Mie theory by using the translational addition theorem for spherical vector wave functions
-
A. Doicu and T. Wriedt, “Computation of the beam-shape coefficients in the generalized Lorenz-Mie theory by using the translational addition theorem for spherical vector wave functions,” Appl. Opt. 36, 2971-2978 (1997).
-
(1997)
Appl. Opt.
, vol.36
, pp. 2971-2978
-
-
Doicu, A.1
Wriedt, T.2
-
15
-
-
0028515368
-
Rigorous justification of the localized approximation to the beam shape coefficients in generalized Lorenz-Mie theory. I. On-axis beam
-
J. A. Lock and G. Gouesbet, “Rigorous justification of the localized approximation to the beam shape coefficients in generalized Lorenz-Mie theory. I. On-axis beam,” J. Opt. Soc. Am. A 11, 2503-2515 (1994).
-
(1994)
J. Opt. Soc. Am. A
, vol.11
, pp. 2503-2515
-
-
Lock, J.A.1
Gouesbet, G.2
-
16
-
-
0028515482
-
Rigorous justification of the localized approximation to the beam shape coefficients in generalized Lorenz-Mie theory. II. Off-axis beam
-
G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam shape coefficients in generalized Lorenz-Mie theory. II. Off-axis beam,” J. Opt. Soc. Am. A 11, 2516-2525 (1994).
-
(1994)
J. Opt. Soc. Am. A
, vol.11
, pp. 2516-2525
-
-
Gouesbet, G.1
Lock, J.A.2
-
17
-
-
0029369907
-
Scattering of fundamental Gaussian beam from a multilayered sphere
-
Z. Wu and X. Fu, “Scattering of fundamental Gaussian beam from a multilayered sphere,” Acta Electron. Sin. 23, 32-36 (1995).
-
(1995)
Acta Electron. Sin.
, vol.23
, pp. 32-36
-
-
Wu, Z.1
Fu, X.2
-
18
-
-
0000699886
-
Scattering of laser beams by Mie scatterer centers: Numerical results using a localized approximation
-
G. Grehan, B. Maheu, and G. Gouesbet, “Scattering of laser beams by Mie scatterer centers: numerical results using a localized approximation,” Appl. Opt. 25, 3539-3548 (1986).
-
(1986)
Appl. Opt.
, vol.25
, pp. 3539-3548
-
-
Grehan, G.1
Maheu, B.2
Gouesbet, G.3
-
21
-
-
84975606862
-
Computations of the gn coefficients in the generalized Lorenz-Mie theory using three different methods
-
n coefficients in the generalized Lorenz-Mie theory using three different methods,” Appl. Opt. 27, 4874-4883 (1988).
-
(1988)
Appl. Opt.
, vol.27
, pp. 4874-4883
-
-
Gouesbet, G.1
Grehan, G.2
Maheu, B.3
-
22
-
-
0000854418
-
Eigenvalues and eigenfunctions of the spheroidal wave equation
-
D. B. Hodge, “Eigenvalues and eigenfunctions of the spheroidal wave equation,” J. Math. Phys. 11, 2380-2312 (1971).
-
(1971)
J. Math. Phys.
, vol.11
, pp. 2312-2380
-
-
Hodge, D.B.1
-
23
-
-
0001002474
-
Theory of electromagnetic beams
-
L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177-1179 (1979).
-
(1979)
Phys. Rev. A
, vol.19
, pp. 1177-1179
-
-
Davis, L.W.1
|